Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
ZnS nanoparticles were synthesized through a one-step precipitation process. Effect of time and temperature on the formation reaction was investigated. The synthesized samples were characterized by X-ray diffraction (XRD), ultraviolet (UV) visible absorption and photoluminescence (PL) spectrophotometry. Based on XRD and UV-Vis data, the particles produced at 70 °C had a mean particle size of about 5 nm. Increasing time and temperature of the synthesis reaction resulted in photoluminescence intensification. PL spectroscopy helped understanding the adsorption kinetics of oxygen on ZnS nanoparticles during the precipitation synthesis process. Fabrication of ZnS structures with appropriate oxygen adsorption capacity was suggested as a means of PL emission intensity control.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
260--265
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Department of Materials Engineering, Imam Khomeini International University, Qazvin, Iran
autor
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
autor
- School of Chemistry, University College of Science, University of Tehran, Tehran, Iran
autor
- Research Center for Molecular and Cellular Imaging (RCMCI), Tehran University of Medical Sciences, Tehran, Iran
Bibliografia
- [1] Li J., Xu Y., Liu Y., Wu D., Sun Y., China Particuology, 2 (2004), 266.
- [2] Dahbi N., Arafah D.E., Energ. Procedia, 18 (2012), 85.
- [3] Miao S., Liu S., Han B., Yang H., Miao Z., Sun Z., J. Colloid. Interf. Sci., 301 (2006), 116.
- [4] Dong F., Guo Y., Zhang J., Li Y., Yang L., Fang Q., Fang H., Jiang K., Mater. Lett., 97 (2013), 59.
- [5] Li L., Bian R., Ding Y., Yu M., Yu D., Mater. Chem. Phys., 113 (2009), 905.
- [6] Dimitrova V., Tale J., Thin Solid Films, 365 (2000), 134.
- [7] Pathak C.S., Mishra D.D., Agarwala V., Mandal M.K., Mat. Sci. Semicon. Proc., 16 (2013), 525.
- [8] She Y.Y., Yang J., Qiu K., T. Nonferr. Metal. Soc., 20 (2010) 211.
- [9] Uekawa N., Matsumoto T., Kojima T., Shiba F., Kakegawa K., Colloid. Surface. A, 361 (2010), 132.
- [10] Su J., Gao F., Hou L., Mater. Lett., 92 (2013), 206.
- [11] Seoudi R., Shabaka A., Eisa W.H., Anies B., Farage N.M., Physica B, 405 (2010), 919.
- [12] Charinpanitkul T., Chanagul A., Dutta J., Rungsardthong U., Tanthapanikakoon W., Sci. Technol. Adv. Mat., 6 (2005), 266.
- [13] Li Y., Chen J., Zhu C., Wang L., Zhao D., Zhuo S., Wu Y., Spectrochim. Acta A, 60 (2004), 1719.
- [14] Dutta K., Manna S., De S.K., Synthetic. Met., 159 (2009), 315.
- [15] Cowles C.L., Zhu X., Biosens. Bioelectron., 30 (2011), 342.
- [16] Loukanov A.R., Dushkin C.D., Papazova K.I., Kirov A.V., Abrashev M.V., Adachi E., Colloid. Surface. A, 245 (2004), 9.
- [17] Geszke M., Murias M., Medjahdi G., Korczyncki J., Mortiz M., Lulek J., Schneider R., Acta Biomater., 7 (2011), 1327.
- [18] Gaceur M., Giraud M., Hemadi M., Nowak S., Menguy N., Quisefit J.P., David K., Jahanbin T., Benderbous S., BOISSI ˇCre M., Ammar S., J. Nanopart. Res., 14 (2012), 932.
- [19] Wang S., Jarret B.R., Kauzlarich S.M., Lourie A.Y., J. Am. Chem. Soc., 129 (2007), 3848.
- [20] Angelo P.D., Keonfli R., Farnood R.R., J. Lumin., 136 (2013), 100.
- [21] Murugadoss G., Rajamannan B., Ramasamay V., J. Lumin., 130 (2010), 2032.
- [22] Zhuang J., Zhang X., Wang G., Li D., Yang W., Li T., J. Mater. Chem., 13 (2003), 1853.
- [23] Yu J.H., KWon S.H., Petrasek Z., Park O.K., Jun S.W., Shin K., Nat. Mater., 12 (2013), 359.
- [24] Liu B.R., Winiarz J.G., Moon J.S., LO S.Y., huang Y. W., Lee H.J., Colloid. Suface. B, 111 (2013), 162.
- [25] Ahmadi R., Masoudi A., Madaah Hosseini H.R., Gu N., Ceram. Int., 39 (2013), 4999.
- [26] Ahmadi R., Madaah Hosseini H.R., Masoudi A., J. Min. Metall. B., 47 (2011), 211.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36d10d92-c59e-421b-8238-ac64129280dc