PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Termodynamika układów węglowodorowych w nanoporowych strukturach złożowych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Thermodynamics of hydrocarbon systems in the nanopore structures
Języki publikacji
PL
Abstrakty
PL
Gaz ziemny z łupków ze złóż niskoprzepuszczalnych piaskowcowych (typu ‘tight’) i łupkowych (typu ‘shale’) jest jednym z najważniejszych paliw kopalnych uznanych jako paliwo ‘przejściowe’ w okresie transformacji energetycznej. Niniejszy artykuł opisuje złożone zjawiska związane z wpływem rozmiarów kanałów porowych, adsorpcji i kapilarnej kondensacji w strukturach nanoporowych. Zjawiska towarzyszące układom nanoporowym powodują też zmianę położenia punktu krytycznego, co wpływa zasadniczo na przesunięcie równowagi fazowej. Omówiono zmodyfikowany dwufazowy model równowagowy dwufazowy w obszarze mikro i nanoporów. Pokazano przykłady zmiany krzywych nasycenia dla wybranego składu układu gazowo-kondensatowego.
EN
Unconventional natural gas from low-permeable sandstone (tight) and shale reservoirs is one of the most important fossil fuels recognized as ‘transient’ fuels during the energy transformation. This paper describes complex phenomena related to confining conditions adsorption and capillary condensation in nanopore structures. The phenomena associated with nanopore systems also cause a critical point to shift, which essentially move the phase equilibria. Paper discusses a modified two-phase equilibrium model in micro and nanopore systems. Examples of changes in phase envelope curves are presented in the selected composition of gas-condensate systems.
Twórcy
  • Wydział Wiertnictwa, Nafty i Gazu AGH w Krakowie
autor
  • Wydział Wiertnictwa, Nafty i Gazu AGH w Krakowie
Bibliografia
  • 1. Adamson A.W., 1990. Physical Chemistry of Surfaces. J. Wiley & Sons Inc.
  • 2. Ahmed T., 1989. Hydrocarbon Phase Behavior (Contributions in Petroleum Geology and Engineering). Gulf Publishing Co (October 1989).
  • 3. Alharthy N.S. et al., 2013, Multiphase Compositional Modeling in Small-Scale Pores of Unconventional [Conferência]. - New Orlean : Society of Petroleum Engineers, 2013. - SPE 166306.
  • 4. Altman R.M. et al., 2014. Understanding Mechanisms for Liquid Dropout from Horizontal Shale Gas Condensate Wells. Society of Petroleum Engineers. doi:10.2118/170983-MS.
  • 5. Brusilovsky A.I., 1990. Mathematical Simulation of Phase Behavior of Natural Multicomponent Systems at High Pressures with an Equation of State. SPE 20180.
  • 6. Campos M.D., 2010. Uncertainties in Shale Gas-_in-Place Calculations: Molecular Simulation Approach. Ph.D. Dissertation, University of Oklahoma, Norman, OK, 2011.
  • 7. Campos M.D., Akkutlu I.Y., Sigal R.F., 2009. A Molecular Dynamics Study on Natural Gas Solubility Enhancement in Water Confined to Small Pores, Paper SPE124491-MS.
  • 8. Cao Minh et al., 2012. 2D-NMR Applications in Unconventional Reservoirs. SPE 161578.
  • 9. Chattarajab, S., D. Mohantyb, T. Kumarc, G. Haldera, Unconventional Oil Gas Resources 2016, 16, 14.
  • 10. Clarkson C.R., Haghshenas B., 2012. Modeling of Supercritical Fluid Adsorption on Organic-Rich Shales and Coal. SPE 164532.
  • 11. Clarkson C.R., Wood J.M., Burgis S.E., Aquino S.D., Freeman M., Birss V., 2012. Nanopore Structure Analysis and Permeability Predictions for a Tight Gas/Shale Reservoir Using Low-Pressure Adsorption and Mercury Intrusion Techniques. SPE 155537.
  • 12. Danesh A.S., Dandekar A.Y., Todal A.C., Sarkar R., 1991. A Modified Scaling Law and Parachor Approach for Improved. Prediction of Interfacial Tension of Gas-Condensate System. SPE 2270.
  • 13. Defay R., Prigogine I., 1966. Surface Tension and Adsorption. Longmans, London.
  • 14. Derouane E.G., 2007. On the physical state of molecules in microporous solids. Microporous and Mesoporous Materials. 104. 46-51.
  • 15. Devegowda D., Sapmanee K., Civan F., Sigal R.F., 2012. Phase Behavior of Gas Condensates in Shales Due to Pore Proximity Effects: Implications for Transport, Reserves and Well Productivity. Society of Petroleum Engineers. doi:10.2118/160099-MS.
  • 16. Dhanapal K. et al., 2014. Phase Behavior and Storage in Organic Shale Nanopores: Modeling of Multicomponent Hydrocarbons in Connected Pore Systems and Implications for Fluids-in-place Estimates in Shale Oil and Gas Reservoirs. SPE-169008-MS.
  • 17. Didar B.R., Akkutlu I.Y., 2013. Pore-Size Dependence of Fluid Phase Behavior and Properties in Organic-Rich Shale. Reservoirs. SPE 164099.
  • 18. Elamin A. et al., 2013. Simulation of Multicomponent Gas Flow and Condensation in Marcellus Shale Reservoir. SPE 159869.
  • 19. Everett D.H., 1972. IUPAC manual of symbols and terminology for physicochemical quantities and units. App. II, Part I. Pure Appl. Chem. Vol. 21, p. 584-594.
  • 20. Fanchi J., 1990. Calculation of Parachors for Compositional Simulation: An Updated. SPE Res. Eng., p. 43 SPE 19453.
  • 21. Firincioglu T. et. al. 2012. Thermodynamics of Multiphase Flow in Unconventional Liquids rich Reservoirs. SPE 123455.
  • 22. Guo P. et al., 1996. A Theoretical Study of the Effect of Porous Media on the Dew Point Pressure of a Gas Condensate. SPE 25644.
  • 23. Hamada Y., Koga K., Tanaka H., 2007. Phase equilibria and interfacial tension of fluids confined in narrow pores. J. Chem. Phys., 127(8): 084908-1-084908-9.
  • 24. Hao S, W. Chu, Q. Jiang, X. Yu, Colloids Surfaces A: Physicochemical Eng. Aspects 2014, 444, 104.
  • 25. Hartman R.C. et al., 2011. Shale Gas-in-Place Calculations Part 2 - Multicomponent Gas Adsorption Effects. SPE 144097-MS.
  • 26. Honarpour et al., 2012. Characterization of Critical Fluid, Rock, and Rock-Fluid Properties - Impact on Reservoir Performance of Liquid-Rich Shales. SPE 158042.
  • 27. IEA (2013), Golden Rules for a Golden Age of Gas, IEA, Paris https://www.iea.org/reports/golden-rules-for-a-golden-age-of-gas
  • 28. IEA (2019), Gas 2019, IEA, Paris https://www.iea.org/reports/market-report-series-gas-2019
  • 29. IEA, 2012. World Energy Outlook: Golden Rules in the Golden Age of Natural Gas. Report IEA. IEA, 2011. World Energy Outlook 2011: Golden Age of Natural Gas? Report IEA.
  • 30. Imioło J., Model adsorpcji/desorpcji metanu i dwutlenku węgla w pokładach i złożach mulowcowo-łupkowych, praca magisterska, AGH 2018.
  • 31. Kang S., Fathi E., Ambrose R.J., Akkutlu I.Y., Sigal R.F., 2011. Carbon Dioxide Storage Capacity of Organic rich Shales. SPE Journal, Vol. 16 (4), 842-855.
  • 32. Kang S.M., 2011. Carbon Dioxide Storage Capacity of Barnett Shale. MSc, Oklahoma Univ.
  • 33. Lee S-T., 1999. Capillary-Gravity Equilibria for Hydrocarbon Fluids in Porous Media. SPE 19650.
  • 34. Lin H., Duan Y-Y., 2005. Empirical correction to the Peng-Robinson equation of state for the saturated region. Fluid Phase Equilibria, 233 (2005) 194-203.
  • 35. Ma Y., Jamili A., 2014. Modeling the Effects of Porous Media in Dry Gas and Liquid Rich Shale on Phase Behavior. Society of Petroleum Engineers. doi:10.2118/169128-MS.
  • 36. Ma Y., Jin L., Jamili A., 2013. Modifying van der Waals Equation of State to Consider Influence of Confinement on Phase Behavior. Society of Petroleum Engineers. doi:10.2118/166476-MS.
  • 37. Mohanty, M.M., B.K. Pal, Int. J. Mining Sci. Technol. 2017, 27, nr 2, 307.
  • 38. Nagy S., 1992. Isenthalpic throttling effect in multiphase and multicomponent systems. Archiwum Termodynamiki, Vol. 12, No. 1-4, p. 116-128.
  • 39. Nagy S., 2002. Capillary adsorption effects in gas condensate systems in tight rocks. Arch. Min. Sci., Vol. 47, No. 2, p. 205-253.
  • 40. Nagy S., 2003. Capillary adsorption effects in gas condensate systems in tight rocks - Vertical variation of hydrocarbon composition. Arch. Min. Sci., Vol. 48, No. 3, p. 355-402.
  • 41. Nagy S., Siemek J., 2011. Shale Gas in Europe: the state of the technology - challenges opportunities. Arch. Min. Sci., Vol. 56, No. 4.
  • 42. Nagy S., Siemek J., 2013. Phase envelope of gas condensate systems in nanopores. [In:] ICEE/ICIT-2013 conference: joint International Conference on Engineering Education and Research and International Conference Information Technology: 8-12 December Cape Town, South Africa. - Cape Town: Cape Peninsula University of Technology, p. 111-119.
  • 43. Nagy, S., J. Siemek (2014). Confined phase envelope of gas-condensate systems in shale rocks. Archives of Mining Sciences, Vol. 59, no. 4, p. 1005-1022.
  • 44. Orangi A. et al., 2011. Unconventional Shale Oil and Gas-Condensate Reservoir Production, Impact of Rock, Fluid and
  • 45. Ortiz V., Lopez-Álvarez Y.M., Lopez G.E., 2005. Phase diagrams and capillarity condensation of methane confined in single- and multi-layer nanotubes. Molecular Physics, 103 (19): 2587-2592.
  • 46. Pang J. et al., 2012. Impact of Porous Media on Saturation Pressures of Gas and Oil in Tight Reservoirs. SPE 161143.
  • 47. Pedersen K.S., Fredenslund A., Thomassen P., 1989. Properties of Oils and Natural Gases. Gulf Publishing Co., Houston, Tx.
  • 48. Peng D.-Y., Robinson D.B., 1976. A New Two-Constant Equation of State. Ind. Eng. Chem. Fund., 15, No. 1, 59-64. PGI, 2012. Assessment of shale gas and shale oil resources of the Lower Paleozoic Baltic-Podlasie-Lublin Basin in the
  • 49. Ping S. et al., 1996. A Theoretical Study of the Effect of Porous Media on the Dew Point Pressure of a Gas Condensate SPE 35644.
  • 50. Poprawa P., 2010. Poszukiwanie złóż gazu ziemnego w łupkach (shale gas) w Polsce. Wiadomości Naftowe i Gazownicze, 2/2010.
  • 51. Reid R.C., Prausnitz I.M., Sherwood T., 1977. The Properties of Gases and Liquids. third edition, McGraw-Hill Book Co. Inc., New York City.
  • 52. Rogers, R.E., K. Ramurthy, G. Rodvelt, M. Mullen, Coalbed methane. Principles and practices, Starkville 2007.
  • 53. Sadyk K., Zade E.S., 1963. Determination of the Beginning of Condensation in the Presence of Porous Media. Neft i Gaz.
  • 54. Sadyk K., Zade E.S., 1968. A Study of the Process at Equilibrium Rate Attainment During Condensate System. Neft i Gaz.
  • 55. Sanaei A., et al., 2014 Production Modeling in the Eagle Ford Gas Condensate Window: Integrating New Relationships between Core Permeability Pore Size and Confined PVT Properties [Conference]. SPE Western North American and Rocky Mountain Joint Regional Meeting, Denver, 2014. SPE-169493-MS.
  • 56. Shapiro A.A., Stanby E.H., 1996. Effect of Capillary Forces & Adsorption on Reserves Distributions. SPE 36922.
  • 57. Siemek J., Nagy S., 2012. Energy carriers use in the world: natural gas - conventional and unconventional gas resources, Arch. Min. Sci., Vol. 57, No. 2, p. 283-312.
  • 58. Sigmund P.M. et al., 1973. Retrograde Condensation in Porous Media. SPE 3476.
  • 59. Singh S.K. at al., 2009. Vapor-Liquid Phase Coexistence, Critical Properties, and Surface Tension of Confined Alkanes. J. of Phys. Chem. C, 113(17).
  • 60. Smith L.R., Yarborough L., 1968. Equilibrium Revaporization of Retrograde Condensate by Dry Gas Injection. SPEJ (March 1968), p. 87-94.
  • 61. Smulski, R. J. Imioło, S. Nagy. (2018) Modele izoterm sorpcji stosowane w złożach gazu w pokładach węgla i w skałach mułowcowo-łupkowych, Przemysł Chemiczny, 2018, T. 97, nr 6, s. 899-902.
  • 62. Tindy R., Raynal M., 1966. Are Test-Cell Saturation Pressures Accurate Enough? Oil and Gas Journal, 64(126).
  • 63. Travalloni L., Castierb M., Tavaresa F.W., Sandler S.I., 2010. Critical behavior of pure confined fluids from an extension of the van der Waals equation of state. Journal of Supercritical Fluids, 55 (2): 455-461.
  • 64. Trebin F.A., Zadora, 1968. Experimental Study of the Effect of a Porous Media on Phase Change in Gas Condensate System. Neft’ i Gaz, 8(37).
  • 65. Whitson C., Sunjerga S., 2012. PVT in Liquid-Rich Shale Reservoirs. SPE 155499.
  • 66. Whitson C.H., Brule M R., 2000. Phase Behavior. SPE Monograph Series. Vol. 20.
  • 67. Yu W., Sepehnoori K., Patzek T., 2016: Modeling gas adsorption in Marcellus shale with Langmuir and BET isotherms, SPE Journal
  • 68. Zhang Y., Civan F., Devegowda D., Jamili A., Sigal R. F., 2013. Critical Evaluation of Equations of State for Multicomponent Hydrocarbon Fluids in Organic Rich Shale Reservoirs. Society of Petroleum Engineers. doi:10.1190/URTEC2013-182.
  • 69. Zhang Y., X. Fan, X. Han, Z. Nan, J. Xu, Global Geology 2012, 15, nr 1, 74.
  • 70. Zuo Y., Stenby E.H., 1997. Corresponding-States and Parachor Models for the Calculation of Interfacial Tensions. Can. J. Chem. Eng., 75, 1130-1137.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36ce231c-b5e6-46a1-ad35-fa7bde491869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.