PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effects of Habitat Deterioration and Social Status on Patrolling Behavior in the Territorial Damselfly Calopteryx splendens

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Patrolling behavior plays an important role in resource defense and in shaping social interactions in territorial species. However, it is not clear whether and how resource deterioration affects patrolling and interactions between territorial males. We addressed this issue by studying the territorial patrolling of damselfly Calopteryx splendens males, which use riverine vegetation patches composed of floating rafts of Potamogeton natans as territories. Males can hold single territories established on one vegetation patch (solitary residents) or hold adjacent territories established on shared vegetation patch (contiguous residents). The study predicted that solitary males engage more in patrolling than contiguous residents and that patrolling intensity is proportional to patch quality. Two types of semi-natural vegetation patches were sunk: of high and low quality measured on the basis of the patch size (range 2–5 m2) and its attractiveness to damselflies (measured as number of residents, non-territorial males and contests observed at a given patch). Changes in number of patrolling flights were monitored for solitary and two contiguous residents: first which hold territory situated closer to the patch centre and secondary holding territory nearer to the edge of a patch. Results indicated that solitary residents patrolled more often than either of the two contiguous residents. Habitat deterioration significantly reduced the patrolling intensity of both single and first contiguous resident, however, their patrolling activity was not resumed at the same intensity after the original patch had been restored. The secondary resident of a contiguous pair did not respond to habitat deterioration, but increased its patrolling activity following restoration. Patch quality was found to have no impact on patrolling, which implies that social context can be more important in predicting changes in patrolling behavior in response to resource deterioration.
Rocznik
Strony
122--131
Opis fizyczny
Bibliogr. 63 poz., fot., tab., wykr.
Twórcy
autor
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
  • ENES, Campus Morelia, Universidad Nacional Autónoma de México, México
autor
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
autor
  • Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Krakow, Poland
Bibliografia
  • [1] Adams E. S. 2001 — Approaches to the study of territory size and shape. — Annu. Rev Ecol. Syst. 32: 277–303.
  • [2] Adamski P., Witkowski Z. 2006 — Male patrolling modes in Apollo butterfly Parnassius apollo (L.): simulation of optimal choice (Lepidoptera: Papilionidae). — Nature Conserv. 62: 27–36.
  • [3] Amsler S. J. 2010 — Energetic costs of territorial boundary patrols by wild chimpanzees — Am. J. Primatol. 72: 93–103.
  • [4] Auld H. L., Punzalan D., Godin J.-G. J., Rundle, H. D. 2009 — Do female fruit flies (Drosophila serrata) copy the mate choice of others? — Behav. Process. 82: 78–80.
  • [5] Barrows E. 2000 — Animal Behavior Desk Reference: A Dictionary of Animal Behavior, Ecology, and Evolution, Second Edition — CRC Press, Boca Raton, Fla, 936 pp.
  • [6] Barrows E. M. 1976 — Mating behavior in halictine bees (Hymenoptera: Halictidae): I, Patrolling and age-specific behavior in males — J. Kansas Entomol. Soc. 49: 105–119.
  • [7] Bell W. J. 1990 — Searching behavior patterns in insects — Annu. Rev. Entomol. 35: 447–467.
  • [8] Berger-Tal O., Polak T., Oron A., Lubin Y., Kotler B. P., Saltz D. 2011 — Integrating animal behavior and conservation biology: a conceptual framework — Behav. Ecol. 22: 236–239.
  • [9] Blom C. W. P. M. 1999 — Adaptations to flooding stress: from plant community to molecule. — Plant Biol. 1: 261–273.
  • [10] Boogert N. J., Fawcett T. W., Lefebvre L. 2011 — Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates — Behav. Ecol. 22: 447–459.
  • [11] Briffa M., Sneddon L. 2010 — Contest Behavior (In: Evolutionary Behavioral Ecology, Eds: D. Westneat, C. Fox) — Oxford University Press, New York, pp. 246–265.
  • [12] Brown J. L. 1987 — Helping Communal Breeding in Birds: Ecology and Evolution — Princeton University Press, 374 pp.
  • [13] Bshary R., Bronstein J. 2004 — Game structures in mutualistic interactions: What can the evidence tell us about the kind of models we need? (In: Advances in the study of behavior, Eds: J. Slater, J. Rosenblatt, C. Snowdon, T. Rope, H. Brockmann, M. Naguib) — Academic Press, New York, pp. 59–102.
  • [14] Candolin U., Wong B. B. M. 2012 — Behavioural Responses to a Changing World: Mechanisms and Consequences — Oxford University Press, Oxford, 280 pp.
  • [15] Corbet P. 2004 — Dragonflies: behaviour and ecology of Odonata — Harley Books, 829 pp.
  • [16] Córdoba-Aguilar A. 2008 — Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research Dragonflies: behaviour and ecology of Odonata — Oxford University Press, USA, 304 pp.
  • [17] Córdoba-Aguilar A., Cordero-Rivera, A. 2005 — Evolution and ecology of Calopterygidae (Zygoptera : Odonata): Status of knowledge and research perspectives — Neotrop. Entomol. 34: 861–879.
  • [18] Creighton E. 2001 — Mate guarding versus territorial defence in the Common Blackbird. — Ibis, 143: 322–326.
  • [19] Davies N., Krebs J., West S. 2012 — An Introduction to Behavioural Ecology 4th Edition — Wiley-Blackwell, Oxford, Hoboken, NJ, 520 pp.
  • [20] Demas G., Nelson R. 2012 — Ecoimmunology — Oxford University Press, USA, 636 pp.
  • [21] Dugatkin L. A., Mesterton-Gibbons M. 1996 — Cooperation among unrelated individuals: reciprocal altruism, by-product mutualism and group selection in fishes. — Bio Syst. 37: 19–30.
  • [22] Eason P. K., Switzer P. V. 2004 — The costs of neighbors for a territorial dragonfly, Perithemis tenera — Ethology, 110: 37–47.
  • [23] Engen S., Bakke O., Islam A. 1998 — Demographic and environmental stochasticity — Concepts and definitions. — Biometrics, 54: 840.
  • [24] Fincke O. M. 1997 — Conflict resolution in the Odonata: implications for understanding female mating patterns and female choice — Biol. J. Linnean Soc. 60: 201–220.
  • [25] Fried C. S., May, M. L. 1983 — Energy expenditure and food intake of territorial male Pachydiplax longipennis (Odonata: Libellulidae) — Ecol. Entomol. 8: 283–292.
  • [26] Gołąb M. J., Śniegula S. 2012 — Changes in reproductive behavior in adult damselfly Calopteryx splendens (Odonata: Calopterygidae) in response to flood — Entomol. Sci. 15: 280–287.
  • [27] Gołąb M. J., Śniegula S., Drobniak S. M., Zając T., Serrano-Meneses, M. A. 2013 — Where do floaters settle? An experimental approach in odonates — Anim. Behav. 86: 1069–1075.
  • [28] Goodenough J., McGuire B., Jakob E. 2009 — Perspectives on Animal Behavior — John Wiley and Sons, 544 pp.
  • [29] Gordon D. 1997 — The population consequences of territorial behaviour — Trends Ecol. Evol. 12: 63–66.
  • [30] Hartigan J. A., Wong M. A. 1979 — A K-means clustering algorithm — Appl. Stat. 28: 100–108.
  • [31] Herr J., Rosell F. 2004 — Use of space and movement patterns in monogamous adult Eurasian beavers (Castor fiber) — J. Zool. Lond. 262: 257–264.
  • [32] Hilfert-Rüppell D. 1999 — To stay or not to stay: Decision-making during territorial behaviour of Calopteryx haemorrhoidalis and Calopteryx splendens splendens (Zygoptera: Calopterygidae) — Int. J. Odonatol. 2: 167–175.
  • [33] Hill S. E., Ryan M. J. 2006 — The role of model female quality in the mate choice copying behaviour of sailfin mollies — Biol. Lett. 2: 203–205.
  • [34] Hynes H. B. N. 1970 — The Ecology of Stream Insects — Annu. Rev. Entomol. 15: 25–42.
  • [35] IBM Corp, N. 2012 — IBM SPSS Statistics for Windows — IBM Corp., Armon, New York.
  • [36] Johnson C. 1962 — Breeding behavior and oviposition in Calopteryx maculatum (Beauvais) (Odonata: Calopterygidae) — Am. Midl. Nat. 68: 242–247.
  • [37] Kaufmann J. H. 1983 — On the definitions and functions of dominance and territoriality — Biol. Rev. 58: 1–20.
  • [38] Krebs J. 1971 — Territory and breeding density in the great tit, Parus major L. — Ecology, 52: 2–22.
  • [39] Lambeets K., Maelfait J., Bonte D. 2008 — Plasticity in flood-avoiding behaviour in two congeneric riparian wolf spiders — Anim. Biol. 58: 389–400.
  • [40] Mandal F. B. 2012. — Textbook of Animal Behaviour — PHI Learning Pvt. Ltd, 308 pp.
  • [41] Marden J. H., Waage J. K. 1990 — Escalated damselfly territorial contests are energetic wars of attrition — Anim. Behav. 39: 954–959.
  • [42] Matthews R. W., Matthews J. R. 2010 — Insect Behavior — Springer, New York, 514 pp.
  • [43] May L. 1991 — Dragonfly flight: Power requirements at high speed and acceleration — J. Exp. Biol. 158: 325–342.
  • [44] Maynard Smith J., Parker G. A. 1976 — The logic of asymmetric contests — Anim. Behav. 24: 159–175.
  • [45] Meek S. B., Herman T. B. 1991 — The influence of oviposition resources on the dispersion and behaviour of calopterygid damselflies — Can. J. Zool. 69: 835–839.
  • [46] Mitani J. C., Watts D. P. 2005 — Correlates of territorial boundary patrol behaviour in wild chimpanzees — Anim. Behav. 70: 1079–1086.
  • [47] Munguía-Steyer R., Córdoba-Aguilar A., Maya-García J. S. 2016 — Rubyspot territorial damselflies behave as “nasty neighbors” — J. Insect Behav. 29: 143–152.
  • [48] Parker G., Sutherland W. 1986 — Ideal free distribution when individuals differ in competitive ability: phenotype limited ideal free models — Anim. Behav. 34: 1222–1242.
  • [49] Parker G. A. 1974 — Assessment strategy and the evolution of fighting behaviour — J. Theor. Biol. 47: 223–243.
  • [50] Parr M. 1983 — An analysis of territoriality in libellulid dragonflies (Anisoptera: Libellulidae). — Odonatologica, 12: 39–57.
  • [51] Resende D. C. 2010 — Residence advantage in heterospecific territorial disputes of Erythrodiplax Brauer species (Odonata, Libellulidae) — Rev. Bras. Entomol. 54: 110–114.
  • [52] Rüppell G. 1989 — Kinematic analysis of symmetrical flight manoeuvres of Odonata — J. Exp. Biol. 144: 13–42.
  • [53] Rüppell G., Rehfeldt G., Schütte C., Hilfert-Rüppell D. 2005 — Die Prachtlibellen Europas: Gattung Calopteryx [European demoiselles — genus Celopteryx] — Westarp Wissenschaften, 256 pp. (in German)
  • [54] Schoener T. 1987 — Time budgets and territory size: some simultaneous optimization models for energy maximizers — Am. Zool. 27: 259–291.
  • [55] Stamps J., Krishnan V. 2001 — How territorial animals compete for divisible space: a learning‐based model with unequal competitors — Am. Nat. 157: 154–169.
  • [56] Sutherland W., Parker G. 1985 — Distribution of unequal competitors (In: Behavioural ecology — ecological consequences of adaptive behaviour, Eds: R. Sibly and R. Smith) — Blackwell, Oxford, pp. 255–274.
  • [57] Sutherland W. J. 2006 — Predicting the ecological consequences of environmental change: a review of the methods — J. Appl. Ecol. 43: 599–616.
  • [58] Switzer P. 2002 — Territory quality, habitat selection, and competition in the amberwing dragonfly, Perithemis tenera (Say) (Odonata: Libellulidae): population patterns as a consequence of individual behavior — J. Kansas. Entomol. Soc. 75: 145–157.
  • [59] Thornhill R., Alcock J. 1983 — Evolution of Insect Mating Systems — Harvard University Press, Cambridge, 360 pp.
  • [60] Waage J. K. 1979 — Adaptive significance of postcopulatory guarding of mates and nonmates by male Calopteryx maculata (Odonata) — Behav. Ecol. Sociobiol. 6: 147–154.
  • [61] Waage J. K. 1987 — Choice and utilization of oviposition sites by female Calopteryx maculata (Odonata: Calopterygidae). I. Influence of site size and the presence of other females — Behav. Ecol. Sociobiol. 20: 439–446.
  • [62] Westneat D., Fox C. W. 2010 — Evolutionary Behavioral Ecology — Oxford University Press, 664 pp.
  • [63] Zahner R. 1960 — Über die bindung der Mitteleuropäischen Calopteryx‐Arten (Odonata, Zygoptera) an den Lebensraum des strömenden Wassers II [On the relationship between the central European Calopteryx species (Odonata, Zygoptera) inhabiting running waters: II] — Intern. Revue Hydrobiol. Hydrogr. 45: 101–123 (in German).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36cdae83-8d05-4929-ae28-7f9c7c2c3aff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.