PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sound diffuser made of acoustic metamaterial: numerical and experimental investigation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of metamaterials in room acoustics is becoming more and more popular. Their advantage is the possibility of adjusting the parameters of the systems in the desired frequency range and the reduction of dimensions compared to the existing solutions. This paper discusses the numerical design and experimental verification of sound diffuser based on the acoustic metamaterials: a slit with added quart-wave length resonator. The transfer matrix method is used to make a numerical model of the metamaterial cell, which was used to build a model of a diffuser composed of N = 7 cells. Then, the dimensions of the diffuser were optimized to obtain the sound diffusion in a wide frequency range. The sound dispersion coefficient was also calculated using the FEM method. The numerical results were compared with the measurements and it was shown that it is possible to make a broadband sound diffuser with the use of metamaterials.
Rocznik
Strony
art. no. 2021207
Opis fizyczny
Bibliogr. 12 poz., 1 fot., rys., wykr.
Twórcy
  • AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. T.J. Cox, P. D’Antonio. : Acoustic Absorbers and Diffusers Theory, Design and Application. CRC Press, 2017.
  • 2. T.J. Cox, P. D’Antonio. Acoustic phase gratings for reduced specular reflection. Applied Acoustics, 60(2):167-186, 2000.
  • 3. Y. Ding, Z. Liu, C. Qiu, J. Shi. Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99:093904, 2007.
  • 4. J.P. Groby, W. Huang, A. Lardeau, Y. Aurégan. The use of slow waves to design simple sound absorbing materials. Journal of Applied Physics, 117:124903, 2015.
  • 5. J-P. Groby, R. Pommier, Y. Aurégan. Use of slow sound to design perfect and broadband passive sound absorbing materials. The Journal of the Acoustical Society of America, 139(4):1660, 2016.
  • 6. doi: 10.1121/1.4945101.
  • 7. N. Jiménez, T.J. Cox, V. Romero-García, J.P. Groby. Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports, 7:5389, 2017.
  • 8. N. Jiménez, V. Romero-García, V. Pagneux, J.-P. Groby. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Physical Review B, 95:014205, 2017.
  • 9. N. Jiménez, W. Huang, V. Romero-García, V. Pagneux, J.-P. Groby. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters, 109:121902, 2016.
  • 10. M.L. Munjal. Acoustics of Ducts and Mufflers. Wiley, Chichester, 2014.
  • 11. ISO 17497-2 2012 Acoustics. Sound-scattering properties of surfaces. Part 2 Measurement of the directional diffusion coefficient in a free field. 2012.
  • 12. A. Pilch. Sources of measurement uncertainty in determination of the directional diffusion coefficient value. Applied Acoustics, 129:268-276,2018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36cc1b11-f0fc-43da-a852-36764749a39c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.