PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the total lipid contents and fatty acid profiles, the marine macro-algae Jania rubens (Rhodophyceae), Ulva linza (Chlorophyceae) and Padina pavonica (Phaeophyceae) were evaluated for biodiesel production during the spring, summer and autumn. Seawater parameters such as pH, salinity and temperature were measured. The total lipid content varied from 1.56% (J. rubens) to 4.14% (U. linza) of dry weight, with the highest values occurring in spring. The fatty acid methyl ester profiles were analysed using gas chromatography. The highest percentage of total fatty acids was recorded in P. pavonica, with 6.2% in autumn, whereas the lowest was in J. rubens, with 68.6% in summer. The relative amount of saturated to unsaturated fatty acids was significantly higher in P. pavonica than in the other macro-algae. Seasonal variations in pH, salinity and temperature had no significant effect on the total lipid and fatty acid contents. Principal component analysis grouped brown and green algae together, whereas red alga grouped out. Furthermore, methyl ester profiles indicate that brown and green seaweeds are preferred, followed by red seaweeds, which appears to have little potential for oil-based products. Therefore, these seaweeds are not targets for biodiesel production.
Czasopismo
Rocznik
Strony
86--92
Opis fizyczny
Bibliogr. 41 poz., tab., wykr.
Twórcy
  • Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
autor
  • Department of Botany and Microbiology, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
Bibliografia
  • [1] Agarwal, A.K., 2007. Biofuels (alcohols and biodiesel) applications as fuels in internal combustion engines. Prog. Energy Combust. Sci. 32, 233—271.
  • [2] Banerjee, A., Chakraborty, R., 2009. Parametric sensitivity in transesterification of waste cooking oil for biodiesel production –— a review. Resour. Conserv. Recycl. 53, 490—497.
  • [3] Belarbi, E.-H., Molina Grima, E., Chisti, Y., 2000. A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb. Technol. 26, 516—529.
  • [4] Bemelmans, W.J.E., Broer, J., Feskens, E.J.M., Smit, A.J., Muskiet, F. A.J., Lefrandt, J.D., Bom, V.J.J., May, J.F., Meyboom-de Jong, B., 2002. Effect of increased intake of α-linolenic acid and group nutritional education on cardiovascular risk factors: the Mediterranean alpha-linolenic enriched Groningen dietary intervention (margarin) study. Am. J. Clin. Nutr. 75, 221—227.
  • [5] Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911—917.
  • [6] Carvalho, J., Ribeiro, A., Castro, J., Vilarinho, C., Castro, F., 2011. Biodiesel production by microalgae and macroalgae from north littoral portuguese coast. In: 1st International Conference on Wastes: Solutions, Treatments and Opportunities, September 12—14.
  • [7] Chisti, Y., 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294—306.
  • [8] Christie, W.W., 1998. Gas chromatography mass spectrometry methods for structural analysis of fatty acids. Lipids 33 (4), 343—351.
  • [9] Denis, C., Moranc¸ais, M., Li, M., Deniaud, E., Gaudin, P., Wielgosz- Collin, G., Barnathan, G., Jaouen, P., Fleurence, J., 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 119, 913—917.
  • [10] El-Shoubaky, G.A., Moustafa, A.M.Y., Salem, E.A.E., 2008. Comparative phytochemical investigation of beneficial essential fatty acids on a variety of marine seaweeds algae. Res. J. Phytochem. 2, 18—26.
  • [11] Enweremadu, C.C., Mbarawa, M.M., 2009. Technical aspects of production and analysis of biodiesel from used cooking oil–—a review. Renew. Sustain. Energy Rev. 13, 2205—2224.
  • [12] Gerpen, V., 2005. Biodiesel processing and production. Fuel Process. Technol. 86, 1097—1107.
  • [13] Gosch, B.J., Magnusson, M., Paul, N.A., De Nys, R., 2012. Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Bioenergy 4 (6), 919—930.
  • [14] Graeve, M., Kattner, G., Wiencke, C., Karsten, U., 2002. Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar. Ecol. Prog. Ser. 231, 67—74.
  • [15] Gunvachai, K., Hassan, M.G., Shama, G., Hellgardt, C., 2007. A new solubility model to describe biodiesel formation kinetics. Process Saf. Environ. Protect. 85 (B5), 383—389.
  • [16] Hansen, A.C., Kyritsis, D.C., Lee, C.F., 2009. Characteristics of biofuels and renewable fuel standard. In: Vertes, A.A., Qureshi, N., Blaschek, H.P., Yukawa, H. (Eds.), Biomass to Biofuels– —Strategies for Global Industries. Blackwell Publishing, Oxford.
  • [17] Holton, R.W., Blicker, H.H., Onore, M., 1964. Effect of growth temperature on the fatty acid composition of blue-green algae. Phytochemistry 3, 595—602.
  • [18] Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621—639.
  • [19] Huerlimann, R., de Nys, R., Heimann, K., 2010. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 107, 245—257.
  • [20] Hughes, A.D., Kelly, M.S., Black, K.D., Stanley, M.S., 2012. Biogas from macroalgae: is it time to revisit the idea? Biotechnol. Biofuels 5, 86—93.
  • [21] Jensen, A., 1993. Present and future needs for algae and algal products. Hydrobiologia 260/261, 15—23.
  • [22] Juneja, A., Ceballos, R.M., Murthy, G.S., 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6, 4607—4638.
  • [23] Khairy, H.M., El-Shafay, S.M., 2013. Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia 55 (2), 435—452.
  • [24] Khotimchenko, S.V., 1991. Fatty acid composition of seven Sargassum species. Phytochemistry 30, 2639—2641.
  • [25] Knothe, G., 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059—1070.
  • [26] Knothe, G., 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22, 1358—1364.
  • [27] Knothe, G., 2009. Improving biodiesel fuel properties by modifying fatty esters composition. J. Energy Environ. Sci. 10, 1039—1054.
  • [28] Komninos, N.P., Rakopoulos, C.D., 2012. Modeling HCCI combustion of biofuels: a review. Renew. Sustain. Energy Rev. 16, 1588—1610.
  • [29] Mata, T.M., Martins, A.A., Caetano, N.S., 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217—232.
  • [30] Matanjun, P., Mohamed, S., Mustapha, N.M., Muhammad, K., 2009. Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. J. Appl. Phycol. 21, 75—80.
  • [31] Murphy, F., Devlin, G., Deverell, R., McDonnell, K., 2013. Biofuel production in Ireland –— an approach to 2020 targets with a focus on algal biomass. Energies 6, 6391—6412.
  • [32] Nelson, M.M., Phleger, C.F., Nichols, P.D., 2002. Seasonal lipid composition in macroalgae of the northeastern Pacific Ocean. Bot. Mar. 45, 58—65.
  • [33] Pinzi, S., Garcia, I.L., Lopez-Gimenez, F.J., Luque de Castro, M.D., Dorado, G., Dorado, M.P., 2009. The ideal vegetable oil-based biodiesel composition: a review of social, economic and technical implications. Energy Fuels 23, 2325—2341.
  • [34] Ramos, M.J., Fernández, C.M., Casas, A., Rodríguez, L., Pérez, A., 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 100, 261—268.
  • [35] Saad, M.A.H., Younes, W.A.N., 2006. Role of phosphorus and nitrogenous species in water quality of a coastal Egyptian heavily polluted Mediterranean basin. Int. J. Oceans Oceanogr. 1 (1), 1—19.
  • [36] Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., Kruse, O., Hankamer, B., 2008. Second generation biofuels: high efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20—43.
  • [37] Singh, J., Cu, S., 2010. Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14, 2596—2610.
  • [38] Veena, C.K., Josephine, A., Preetha, S.P., Varalakshmi, P., 2007. Beneficial role of sulfated polysaccharides from edible seaweed Fucus vesiculosus in experimental hyperoxaluria. Food Chem. 100, 1552—1559.
  • [39] Williams, P.J.L., Laurens, L.M.L., 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci. 3, 554—590.
  • [40] Zabeti, M., Daud, W.M., Aroua, M.K., 2009. Activity of solid catalysts for biodiesel production: a review. Fuel Process. Technol. 90, 770—777.
  • [41] Zemke-White, W.L., Ohno, M., 1999. World seaweed utilisation: an end-of-century summary. J. Appl. Phycol. 11, 369—376.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36ca3d47-d04b-4f00-8e46-d5b4e41460c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.