PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Numerical Approach for Solving Abel’s Integral Equations

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we present an efficient method for solving Abel’s integral equations. This important equation is consisting of an integral equation that is modeling many problems in literature. Our proposed method is based on first taking the truncated Taylor expansions of the solution function and fractional derivatives, then substituting their matrix forms into the equation. The main character behind this technique’s approach is that it reduces such problems to solving a system of algebraic equations, thus greatly simplifying the problem. Numerical examples are used to illustrate the preciseness and effectiveness of the proposed method. Figures and tables are demonstrated to solutions impress. Also, all numerical examples are solved with the aid of Maple.
Rocznik
Strony
255--271
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University Mugla, Turkey
  • Ula Ali KOÇMAN Vocational Scholl Muğla Sıtkı Koçman University, Mugla, Turkey
  • Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University Mugla, Turkey
Bibliografia
  • [1] Avazzadeh Z., Shafiee B., Loghmani G.B., Fractional calculus for solving Abel’s integral equations using Chebyshev polynomials, Applied. Mathematical Science, 5, 45, 2011, 227-2216.
  • [2] Brenke W.C., An application of Abel’s integral equation, American Mathematics Monthly, 2, 29,1922, 58-60.
  • [3] Caputo M., Fabrizio M., A new definition of fractional derivative without singular Kernel, Progress in Fractional Differentiation and Applications 1, 2015, 73-85.
  • [4] Cimatti G., Application of the Abel integral equation to an inverse problem in thermoelectricity, Europen Journal of Applied Mathematics, 20, 2009, 519-529.
  • [5] Cremers C.J., Birkebak R.C., Application of the Abel Integral Equation to Spectrographic Data, Applied Optics, 5, 1996, 1057-1064.
  • [6] Diethelm K., The Analysis of Fractional Differential Equations, Springer-Verlag, Berlin Heidelberg, 2010.
  • [7] Ganji D.D., The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer, Physics Letter A, 355, 2006, 337-34.
  • [8] Gao W., Baskonus H.M., Shi L., New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system, Advance in Difference Equation, 391, 2020, 1-11.
  • [9] Gao W., Veeresha P., Baskonus H.M., Prakasha D.G., Kumar P., A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos, Solitons and Fractals, 138, 2020, 109929.
  • [10] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., New numerical simulation for fractional Benney–Lin equation arising in falling film problems using two novel techniques, Numerical methods for partial differential equation, 37, 1, 2020, 210-243.
  • [11] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos, Solitons and Fractals, 134, 2020, 109696.
  • [12] Gao W., Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., New Numerical Results for the Time-Fractional Phi-Four Equation Using a Novel Analytical Approach, Symmetry, 2020, 12, 478.
  • [13] Gorenflo R., Vessella S., Abel Integral Equations: Analysis and Applications, Lecture Notes in Mathematics 1461, Springer-Verlag, Berlin, 1991.
  • [14] He J.H., Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 178, 1999, 257-262.
  • [15] Huang L., Huang Y., Fang-Li X., Approximate solution of Abel integral equation, Compters Mathematics with Applications, 56, 2008, 1748-1757.
  • [16] Ilhan E., Kıymaz O., A generalization of truncated M-fractional derivative and applications to fractional differential equations, Applied Mathematics and Nonlinear Sciences, 5, 1, 2020, 171-188.
  • [17] Kumar S., Sloan I.H., A new collocation-type method for Hammerstein integral equations, Journal of Mathematics and Computer Science, 48, 1987, 123-129.
  • [18] Mirčeski V., Tomovski Z., Analytical solutions of integral equations for modeling of reversible electrode processes under voltammetric conditions, Journal of Electroanalytical Chemistry, 619, 620, 2008 164-168.
  • [19] Munkhammar J.D., Fractional calculus and the Taylor–Riemann series, Undergrad Mathematics Journal, 6, 1, 2005, 6.
  • [20] Pandey R.K., Singh O.P., Singh V.K., Efficient algorithms to solve singular integral equations of Abel type, Computers Mathematics with Applications, 57, 2009, 664-676.
  • [21] Podlubny I., Fractional differential equations. New York: Academic Press, 1999.
  • [22] Singh J., Kumar D., Hammouch Z., Atangana A., A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Applied Mathematics and Computation, 316, 2018, 504-515.
  • [23] Vanani S.K., Solevmani F., Tau approximate solution of weakly singular Volterra integral equations, Mathematical and Computer Modelling., 57, 2013, 3-4.
  • [24] Veeresha P., Prakasha D.G., Baskonus H.M., Yel G., An efficient analytical approach for fractional Lakshmanan-Porsezian-Daniel model, Mathematical methods in applied science, 43, 2020, 4136-4155.
  • [25] Veeresha P., Baskonus H.M., Prakasha D.G., Gao W., Yel G., Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena, Chaos, Solitons and Fractals, 133, 2020, 109661.
  • [26] Yousefi S.A., Numerical solution of Abel’s integral equation by using Legendre wavelets, Applied Mathematics and Computation, 175, 2006 574-580.
  • [27] Wu J., Zhou Y., Hang C., A singularity free and derivative free approach for Abel integral equation in analyzing the laser-induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy,167, 2020, 105791.
  • [28] Zhang Y., Cattani C., Yang X.J., Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domain, Entropy, 17, 2015, 6753-6764.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36c933f6-e874-4716-bbd5-dc4b5c9f208b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.