PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanism study on deep eutectic solvent for desilication of magnetite by reverse flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Magnetite reverse flotation using a new deep eutectic solvent synthesized by lactic acid and CTAC as the collector has been investigated in this work. The flotation test results were compared with dodecylamine. The CTAC/lactic acid DES increased the grade of total iron to 66.69%, and the reduce quartz content to 6.67%, which were preferable to dodecylamine (the grade of Fe in the concentrate is 63.47%, and the grade of quartz in the concentrate is 9.13%). The depression performance and adsorption mechanism of CTAC/lactic acid DES on surface of magnetite and quartz are investigated by FT-IR, zeta potential and XPS. The results show that the adsorption of CTAC/lactic acid DES on quartz surface is more effective than that of magnetite. Therefore, deep eutectic solvent is an effective reagent for reverse flotation of magnetite as collector.
Rocznik
Strony
12--22
Opis fizyczny
Bibliogr. 34 poz., rys. kolor.
Twórcy
autor
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
autor
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
  • State Key Laboratory of Mineral Processing, Beijing 100080, China
autor
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
  • State Key Laboratory of Mineral Processing, Beijing 100080, China
  • State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources
  • meiguangjun@aliyun.com
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
  • State Key Laboratory of Mineral Processing, Beijing 100080, China
autor
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
  • State Key Laboratory of Mineral Processing, Beijing 100080, China
autor
  • Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
  • State Key Laboratory of Mineral Processing, Beijing 100080, China
Bibliografia
  • ARAUJO, A. C., VIANA, P. R. M., PERES, A. E. C., 2005. Reagents in iron ores flotation. Minerals Engineering, 18, 2, 219-224.
  • AVALOS, M., BABIANO, R., CINTAS, P., CINTAS, P., JIMENEZ, J. L., PALACIOS, J. C., 2006. Greener Media In Chemical Synthesis and Processing. Angewandte Chemie International Edition, 45, 24, 3904-3908.
  • AYDIN, A., KAYA, 0., 2013. Syntheses of novel copolymers containing carbazole and their electrochromic properties. Journal of Electroanalytical Chemistry, 2013,691, 1-12.
  • FILIPPOV, L. O., Filippova, I. V., Severov, V. V., 2010, The use of collectors mixture in the reverse cationic flotation of magnetite ore: The role of Fe-bearing silicates. Minerals Engineering, 23, 2, 91-98.
  • FRANCISCO, M., BRUINHORST, A., KROON, M. C., 2013. Low-Transition-Temperature Mixtures (LTTMs): A New Generation of Designer Solvents. Angewandte Chemie International Edition, 52, 11, 3074-3085.
  • GE, Y. Y., CHEN, D., YU, Y. F., 2004. Study on reverse flotation of magnetite with ge-601 low temperature-resistant cationic collector. Metal Mine, 4, 32-34.
  • HUANG, K., 2012. Simultaneous Removal of Cadmium and Phenol by Chelated Organic Bentonite from Mineral Processing Wastewater. Xiangtan University.
  • LI, H., MEI, G. J., YU, M. M., CHENG, Q. 2019. The mechanism study on aryl-substituted aromatic acid ionic liquid as the collector for quartz flotation. Physicochem. Probl. Miner. Process., 55, 5, 1239-1249.
  • LI, X., ROW, K. H., 2016. Development of deep eutectic solvents applied in extraction and separation. Journal of separation science, 39, 18, 3505-3520.
  • LI, Y. C., ZHAO, Z. C., 1997. Purification of iron concentrate. Chemical Mine Technology, 4, 17-19.
  • LIU, C. M., Cao, X. F., Chen, C., 2009. Research on the flotation of quartz using dodecyl tertiary amines. Mining and Metallurgical Engineering, 29, 3,37-39.
  • LIU, C., 2018. Performance of vortex assisted liquid-liquid microextraction based on hydrophobic eutectic solvent. Environmental engineering of Henan Normal University.
  • MEI, G. J., YU, J., CAI, H. L., YU, Y. F., 2000. Application research of sparating hematite from iron-containing silicates by flotation. Metal Mine, 2, 28-31.
  • MING, C. Q., GREISH, Y., EL-GHANNAM, A., 2004. Crystallization behavior of silica-calcium phosphate biocomposites: XRD and FTIR studies. Journal of materials science. Materials in medicine, 15, 11, 1227-1235.
  • NAKHAEI, F., IRANNAJAD, M.,2018. Reagents types in flotation of iron oxide minerals: A review. Mineral processing and extractive metallurgy review, 39, 2, 89-124.
  • NAYAK, P. S., SINGH, B. K., 2007. Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of materials science, 30, 3 ,235-238.
  • PAPINI, R. M., BRANDÃO, P. R. G., PERES, A. E. C. 2001. Cationic flotation of iron ores: amine characterization and performance. Mining, Metallurgy & Exploration, 18, 1, 5-9.
  • PAPIRI, R. M., 2001. Cationic flotation of iron ores: properties and behavior of amines. Metallic Ore Dressing Abroad, 8, 27-30.
  • REN, W. J., WANG, Y. H., 2004. Reverse flotation de-silicates on iron ores. China Mining Magazine. 13, 4, 70-72.
  • SAHOO, H., RATH, S. S., DAS, B.,2014. Use of the ionic liquid-tricaprylmethyl ammonium salicylate (TOMAS) as a flotation collector of quartz. Separation and Purification Technology, 136, 66-73.
  • SAHOO, H., RATH, S. S., JENA, S. K., 2015. Aliquat-336 as a novel collector for quartz flotation. Advanced Powder Technology, 26, 02, 511-518.
  • SAHOO, H., RATH, S. S., JENA, S. K., 2015. Ionic liquids as novel quartz collectors: Insights from experiments and theory. Chemical Engineering Journal, 273, 46-54.
  • SONG, R. F., LI, W. B., LIU, Y. H., 2009. Review of the development of china's reverse flotation technology for iron ore. Metal Mine, 9, 13-18.
  • SU, J., CHENG, Y., TAN, L., 2009. Preparation and Hydrolytic Degradation of Poly(hexylene Terephthalate-co-Lactide) co-Polyesters From Melting Polycondensation. Journal of biomaterials science. Polymer ed., 20, 1,99-114.
  • VIEIRA, A. M., PERES, A. E. C., 2007. The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20, 10, 1008-1013.
  • WANG, W. J., YU, H., CHENG, C., ZHEN, K. L., YANG, C. Y., XU, L. H., 2015. Adsorption Removal of Phenols from Water by CTMAB-Bent and HDBAC-Bent. Journal of Zhejiang University of Water Resources and Electric Power, 27, 03, 33-37.
  • WANG, Y. P., 2016. The Joint Effect of binary mixtures of nan-ZnO and cetyltrimethyl ammonium chloride on the Growth of Chlorella Vulgaris. Xiangtan University.
  • WEI, D. Z., WANG, B. Y., FANG, P., 2005. A new collector used for flotation of oxide minerals. Transactions of Nonferrous Metals Society of China, 18, 2, 267-273.
  • WU, T., WU. W., 2014. Application and research progress of eutectic solvents in chemical separation process. Shandong chemical industry, 43, 11, 66-69.
  • XIE, J., SONG, Y., JIAO, Y., 2014. Preparation and surface modification of lactic acid/N, N-bis (2-hydroxyethyl) glycine copolymer microspheres. Polymeric Materials Science and Engineering, 30, 1, 40-43.
  • YANG, Z. C., TENG, Q., LIU, J., YANG, W. P., HU, D. H., LIU, S. Y., 2019. Use of NaOL and CTAB mixture as collector in selective flotation separation of enstatite and magnetite. Colloids and surfaces. A, Physicochemical and engineering aspects, 570, 481-486.
  • ZUBEIR, L.F., OSCH, D.J.G.P. Van, ROCHA, M.A.A., BANAT, F., Kroon, M.C., 2018. Carbon Dioxide Solubilities In Decanoic Acid-Based Hydrophobic Deep Eutectic Solvents, Chem. Eng. 63, 913–919.
  • ZHANG, Y. J., YANG, Z. H., SONG, P. P., XU, H. Y., XU, R., HUANG, J., LI, J., ZHOU, Y., 2016. Application of TiO2- organobentonite modified by cetyltrimethylammonium chloride photocatalyst and polyaluminum chloride coagulant for pretreatment of aging landfill leachate. Environmental Science and Pollution Research, 23, 18, 18552-18563.
  • ZHAO, Z. Q., DAI, H. X., 2007. Present state and technological discussion of quality improvement and impurity reduction of iron concentrate. Yunnan Metallurgy, 36, 1, 24-27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36c5bdb3-8a60-4111-93bb-0aecd5a2b6f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.