PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of High Entropy Alloy as Catalyst for Azo Dye Degradation in Fenton Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Azo dye is widely used in the textile industry since it is cost effective and simple to use. However, it becomes a continuous source of environmental pollution due to its carcinogenicity and toxicity. Various methods had been used to remove the azo dye in solution. One of the famous and frequently used is the Fenton process. The Fenton process is one of the advanced oxidation processes where iron catalysed hydrogen peroxide to generate hydroxyl radical. Treating azo dyes in solution requires a catalyst to enhance the process of degradation. Herein, high entropy alloys (HEAs) have been proposed as a catalytic material to enhance the performance of Fenton process for azo dye degradation. HEAs have been reported as a promising catalyst due to its high surface area. The higher the number of active sites, the higher the rate of azo dye degradation as more active sites are available for adsorption of azo dyes. The results have shown that HEAs can be used as a catalyst to fasten the Fenton reaction since the degradation time is proven to be shorter in the presence of HEAs. The method derived from the result of this study will contribute in treating azo dyes for wastewater management in the Fenton process.
Słowa kluczowe
Twórcy
  • International Islamic University Malaysia, Department of Manufacturing and Materials Engineering, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • International Islamic University Malaysia, Department of Manufacturing and Materials Engineering, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • International Islamic University Malaysia, Department of Manufacturing and Materials Engineering, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
  • Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  • International Islamic University Malaysia, Department of Manufacturing and Materials Engineering, Jalan Gombak, 53100 Kuala Lumpur, Malaysia
Bibliografia
  • [1] Y.L. Pang. A.Z. Abdullah, Clean Soil, Air and Water 41 (8), 751-764 (2013).
  • [2] https://www.ellenmacarthurfoundation.org/publications/a-new-textiles-economy-redesigning-fashions-future, accessed: 17.01.2021
  • [3] P.F. Gordon, P. Gregory, Organic chemistry in colour, Springer Science & Business Media (2012).
  • [4] B.J. Brüschweiler, C. Merlot, Regulatory Toxicology and Pharmacology 88, 214-226 (2017).
  • [5] R. Jamee, R. Siddique, European Journal of Microbiology and Immunology 9 (4), 114-118 (2019).
  • [6] G. Matyszczak, K. Krzyczkowska, A. Fidler, Journal of Water Process Engineering 36, 101242 (2020).
  • [7] S.K. Wu, Y. Pan, N. Wang, W. Dai, J. Lu, T. Lu, RSC Adv. 8 (72), 41347-41354 (2018).
  • [8] P.V. Nidheesh, R. Gandhimathi, Desalination 299, 1-15 (2012).
  • [9] S. Sabhi, J. Kiwi, Water Res. 35, 1994 (2001).
  • [10] G. Matyszczak, A. Sędkowska, S. Kuś, Dyes and Pigments 174, 108076 (2020).
  • [11] M. Azami, M. Bahram, S. Nouri, Current Chemistry Letters 2 (2), 57-68 (2013).
  • [12] E. Severo, G.L. Dotto, S. Silvestri, I. Nunes, J.S. Salla, A. Martinez, K. Martinello, E.L. Foletto, Journal of Environmental Chemical Engineering 8, 103853 (2020).
  • [13] D.B. Miracle, Nature Communications 10 (1), 1805 (2019).
  • [14] X. Cui, B. Zhang, C. Zeng, S. Guo, MRS Communications 1 (2018).
  • [15] S. Wang, H. Xin, Chem. 5 (3), 502-504 (2019).
  • [16] M.H. Tsai, J.W. Yeh, Materials Research Letters 2 (3), 107-123 (2014).
  • [17] M. Xu, C. Wu, Y. Zhou, Advanced Oxidation Processes - Applications, Trends, and Prospect 4 (2020).
  • [18] E. Guivarch, S. Trevin, C. Lahitte, M.A. Oturan, Environ. Chem. Lett. 1, 38-44 (2003).
  • [19] F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, M. Oturan, Applied Catalysis B: Environmental 199, 331-341 (2016).
  • [20] M. Nabiałek, M. Szota, M. Dośpiał, P. Pietrusiewicz, S. Walters, Journal of Magnetism and Magnetic Materials 322 (21), 3377-3380 (2010).
  • [21] H. Jiang, Y. Sun, J. Feng, J. Wang, Water Science and Technology 74 (5), 1116-1126 (2016).
  • [22] Z. Lv, X. Liu, B. Jia, Sci Rep 6, 34213 (2016).
  • [23] W. Feng, D. Nansheng, H. Helin, Chemosphere 41 (8), 1233-8 (2000).
  • [24] B. Elias, L. Guihard, S. Nicolas, F. Fourcade, A. Amrane, Environmental Progress and Sustainable Energy 30 (2), 160-167 (2011).
  • [25] S.K. Wu, Y. Pan, N. Wang, T. Lu, W.J. Dai, International Journal of Minerals, Metallurgy, and Materials 26 (1), 124-132 (2019).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36c14dd8-5f2e-4e81-84f4-ef33b526a9f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.