PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Investigation of the Accelerated Ageing of Carbon-Epoxy Composites on their Mechanical Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, carbon-epoxy composites obtained by an autoclave process were subjected to accelerated ageing in controlled conditions of temperature, water and UV radiation. Each composite was exposed to salt water at 60°C or UV radiation at 60°C over a period of 6 months. Changes within the composites were evaluated by mass and density variation, mechanical testing and also in terms of camouflage. Results did not show significant changes in mass loss or density, and it was found that mechanical properties had decreased slightly. The biggest change is in camouflage. It was observed that during accelerated ageing, the composites’ reemission coefficient becomes too high and composites lose camouflage properties.
Rocznik
Strony
73--80
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Institute of Security Technologies “MORATEX”, Lodz, Poland
  • Łukasiewicz – Lodz Institute of Technology, Lodz, Poland
  • Institute of Security Technologies “MORATEX”, Lodz, Poland
  • Institute of Security Technologies “MORATEX”, Lodz, Poland
  • Institute of Security Technologies “MORATEX”, Lodz, Poland
  • Silesian Science and Technology Centre of Aviation Industry Ltd., Czechowice-Dziedzice, Poland
  • Silesian Science and Technology Centre of Aviation Industry Ltd., Czechowice-Dziedzice, Poland
  • Łukasiewicz – Lodz Institute of Technology, Lodz, Poland
Bibliografia
  • 1. Othman R, Ismail NI, Pahmi MAAH, Basri MHM, Sharudin H, Hemdi AR. Application of Carbon Fiber Reinforced Plastics in Automotive Industry: A Review. J. Mech. Manuf. 2018;1:144-154.
  • 2. Rasheed A, Khalid FA. Fabrication and properties of CNTs reinforced polymeric matrix nanocomposites for sports applications. IOP Conf. Ser. Mater. Sci. Eng. 2014;60:012009.
  • 3. Kośla K, Kubiak P, Łandwijt M, Urbaniak W, Kucharska-Jastrząbek A. Fragment-Resistant Property Optimization within Ballistic Inserts Obtained on the Basis of Para-Aramid Materials. Materials 2022;15:1–16.
  • 4. Clifton S, Thimmappa BHS, Selvam R, Shivamurthy B. Polymer nanocomposites for high-velocity impact applications-A review. Compos. Commun. 2020;17:72–86.
  • 5. Liu TQ, Liu X, Feng P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects. Compos. Part B. 2020;194:107958.
  • 6. Shao Y, Kouadio S. Durability of fiberglass composite sheet piles in water. J. Compos. Constr. 2002;6:280–287.
  • 7. Yuan H, Cai R, Meng Q, Wang, L. Investigation of flexural properties and failure behaviour of biaxial braided CFRP. Polym. Test. 2020;87:106545.
  • 8. Kim J, Cha J, Chung B, Ryu S, Hong SH. Fabrication and mechanical properties of carbon fiber/epoxy nanocomposites containing high loadings of noncovalently functionalized graphene nanoplatelets. Compos. Sci. Technol. 2020;192:108101.
  • 9. Lee JM, Min BJ, Park JH, Kim DH, Kim BM, Ko DC. Design of lightweight CFRP automotive part as an alternative for steel part by thickness and lay-up optimization. Materials. 2019; 12: 2309.
  • 10. Keller T. Recent all-composite and hybrid fibre-reinforced polymer bridges and buildings. Prog. Struct. Eng. Mater. 2001;3:132–140.
  • 11. Turner MK, Harries KA, Petrou MF, Rizos D. In situ structural evaluation of a GFRP bridge deck system. Compos. Struct. 2004;65:157–165.
  • 12. Kobayashi Y, Kobayashi S. Accelerated thermo-oxidative aging for carbon fiber reinforced polycyanate under high pressure atmosphere. Adv. Compos. Mater. 2017;26:451-464.
  • 13. Sarker M, Hadigheh SA, Dias-da-Costa D. A performance-based characterisation of CFRP composite deterioration using active infrared thermography. Compos. Struct. 2020;241:112134.
  • 14. Fasana A, Ferraris A, Airale A.G, Polato DB, Carello M. Oberst and aging tests of damped CFRP materials: New fitting procedure and experimental results. Compos. Part B. 2018;148:104-113.
  • 15. Guzmán E, Cugnoni J, Gmür T. Multifactorial models of a carbon fibre/epoxy composite subjected to accelerated environmental ageing. Compos. Struct. 2014;111:179–192.
  • 16. Cysne Barbosa AP, Fulco AP, Guerra E, Arakaki FK, Tosatto M, Costa MCB, Melo JDD. Accelerated aging effects on carbon fiber/epoxy composites. Compos. Part B. 2017;110:298–306.
  • 17. Fidan S, Özgür Bora M, Çoban O, Akagündüz E. The scratch behavior of accelerated aged carbon fiber-reinforced epoxy matrix composite. Polym. Compos. 2016;37:3527–3534.
  • 18. Ofoegbu SU, Quevedo MC, Bastos AC, Ferreira MGS, Zheludkevich ML. Electrochemical characterization and degradation of carbon fibre reinforced polymer in quiescent near neutral chloride media. NPJ Mater Degrad. 2022;6:49.
  • 19. Ofoegbu, SU, Ferreira, MGS, Zheludkevich, ML. Galvanically Stimulated Degradation of Carbon-Fiber Reinforced Polymer Composites: A Critical Review. Materials 2019;12:651.
  • 20. Santos TFA, Vasconcelos GC, de Souza WA, Costa ML, Botelho EC. Suitability of carbon fiber-reinforced polymers as power cable cores: Galvanic corrosion and thermal stability evaluation. Materials & Design (1980-2015), 2015;65:780-788.
  • 21. Yang Y, Silva MAG, Silva, RJC. Material degradation of cfrp-to-steel joints subjected to salt fog. Composites Part B: Engineering 2019;173:106884.
  • 22. Miriyala S, Tucker W, Rockett T, Brown R. Degradation of carbon reinforced polymer composites under galvanic coupling conditions. AIAA 1992-2553. 33rd Structures. Paper presented at: Structural Dynamics and Materials Conference. April 1992.
  • 23. Alias MN, Brown R. Corrosion behavior of carbon fiber composites in the marine environment. Corrosion Science 1993;35:395-402.
  • 24. Whitman BW, Miller D, Davis R, Brennan J, Swain GM. Effect of galvanic current on the physicochemical, electrochemical and mechanical properties of an aerospace carbon fiber reinforced epoxy composite. Journal of The Electrochemical Society. 2017; 164(13): C881-C891.
  • 25. Geretschläger KJ, Wallner GM. Aging characteristics of glass fiber-reinforced polyamide in hot water and air. Polym. Compos. 2018;39:997–1005.
  • 26. Davies P, Le Gac PY, Le Gall M, et al. Marine Ageing Behaviour of New Environmentally Friendly Composites. In: Durability of Composites in a Marine Environment 2. In: Davies P, and Rajapakse Y. editors. Publisher: Springer, Switzerland, 2018; 245, pp. 225–237.
  • 27. Lu T, Solis-Ramos E, Yi Y, Kumosa M. UV degradation model for polymers and polymer matrix composites. Polymer Degradation and Stability 2018; 154: 203-210.
  • 28. Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review. Springerplus. 2013;2:398.
  • 29. Guillet JE. Fundamental Processes in the UV degradation and stabilization of polymers. In: Rado R. editor, Chemical Transformations of Polymers, Butterworth-Heinemann, 1972, pp. 135-144.
  • 30. Cysne Barbosa AP, Fulco APP, Guerra ESS, Arakaki FK, Tosatto M, Costa MCB, Melo JDD. Accelerated aging effects on carbon fiber/epoxy composites. Composites Part B: Engineering 2017;110:298-306.
  • 31. Marouani S, Curtil L, Hamelin P. Ageing of carbon/epoxy and carbon/vinylester composites used in the reinforcement and/or the repair of civil engineering structures, Composites Part B: Engineering 2012;43:2020-2030.
  • 32. Alessi S, Pitarresi G, Spadaro G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Composites Part B: Engineering 2014;67:145-153.
  • 33. Madej-Kiełbik L, Kośla K, Zielińska D, Chmal-Fudali E, Maciejewska E. Effect of accelerated ageing on the mechanical and structural properties of the material system used in protectors. Polymers. 2019;11:1263.
  • 34. Fejdyś M, Kucharska-Jastrząbek A, Kośla K. Effect of Accelerated Ageing on the Ballistic Resistance of Hybrid Composite Armour with Advanced Ceramics and UHMWPE Fibres. Fibres Text. East. Eur. 2020;28:71–80.
  • 35. Nikafshar S, Zabihi O, Ahmadi M, Mirmohseni A, Taseidifar M, Naebe M. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber. Materials (Basel). 2017 Feb; 10(2): 180. Published online 2017 Feb 14. doi: 10.3390/ma10020180
  • 36. Li Z, Wang X, Zhang Y, Jing C. Enhancing the Corrosion Resistance of Epoxy Coatings by Impregnation with a Reduced Graphene Oxide-Hydrophobic Ionic Liquid Composite. ChemElectroChem2018,5, 3300–3306
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36c11849-11ae-4ff7-9474-a8894df5b9c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.