PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research of veles planetary rover performing simple construction tasks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is concerned with the problem of experimental research of Veles planetary rover performing simple construction tasks. The current state of the art in planetary rovers and their research in construction tasks are discussed. The Veles rover solution designed for construction tasks and experimental testbed are described. The experimental testbed included a test room with Moon regolith analogue. Experimental research concerning rover mobility and manipulation tasks were carried out. Experimental research consisted of various scenarios, including clearing an area that removes boulders and levelling the soil. The complementary scenario for the area preparation was to exchange the tools of the manipulator. In this case, the gripper and the shovel were used as end-effectors for moving objects, both structured or in the form of regolith. Results of selected experimental research are presented and discussed. Finally, directions of future works of the rover are pointed out.
Twórcy
  • PIAP Space Sp. z o.o., Al. Jerozolimskie 202, 02-486 Warsaw, Poland
  • PIAP Space Sp. z o.o., Al. Jerozolimskie 202, 02-486 Warsaw, Poland
  • PIAP Space Sp. z o.o., Al. Jerozolimskie 202, 02-486 Warsaw, Poland
Bibliografia
  • [1] A. Lopez Arreguin, S. Montenegro and E. Dilger, “Towards in-situ characterization of regolith strength by inverse terramechanics and machine learning: A survey and applications to planetary rovers”, Planetary and Space Science, vol. 204, 2021, 10.1016/j.pss.2021.105271.
  • [2] M. G. Bekker, Off-the-road Locomotion: Research and Development in Terramechanics, University of Michigan Press, 1960.
  • [3] L. M. Bielenberg, “Robust Visual Servo Control and Tracking for the Manipulator of a Planetary Exploration Rover”, Master Thesis, Technical University Munich, 2021.
  • [4] P. Bigaj, J. Bartoszek and M. Trojnacki, “Sensitivity Analysis of Semiautonomy Algorithm of Mobile Robot to Environmental Sensors’ Failure - Simulation Research and Experimental Tests”. In: 28th International Symposium on Automation and Robotics in Construction, Seoul, Korea, 795-800, 10.22260/ISARC2011/0148.
  • [5] K. Bussmann, A. Dietrich and C. Ott, “Whole-Body Impedance Control for a Planetary Rover with Robotic Arm: Theory, Control Design, and Experimental Validation”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018, 910–917, 10.1109/ICRA.2018.8460533.
  • [6] P. Corke, Robotics, Vision and Control, Springer International Publishing, 2017.
  • [7] M. Heverly, J. Matthews, J. Lin, D. Fuller, M. Maimone, J. Biesiadecki and J. Leichty, “Traverse Performance Characterization for the Mars Science Laboratory Rover”, Journal of Field Robotics, vol. 30, no. 6, 2013, 835–846, 10.1002/rob.21481.
  • [8] A. S. Howe, B. H. Wilcox, H. Nayar, R. P. Mueller and J. M. Schuler, “Maintenance-optimized Modular Robotic Concepts for Planetary Surface ISRU Excavators”. In: 2020 IEEE Aerospace Conference, 2020, 1–15, 10.1109/AERO47225.2020.9172688.
  • [9] K. Iagnemma and S. Dubowsky, Mobile Robots in Rough Terrain: Estimation, Motion Planning, and Control with Application to Planetary Rovers,Springer Berlin Heidelberg, 2004.
  • [10] G. Ishigami, A. Miwa, K. Nagatani and K. Yoshida, “Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil”, Journal of Field Robotics, vol. 24, no. 3, 2007, 233–250, 10.1002/rob.20187.
  • [11] A. Kawakami, A. Torii, K. Motomura and S. Hirose, “SMC Rover: Planetary Rover with Transformable Wheels”. In: B. Siciliano and P. Dario (eds.), Experimental Robotics VIII, vol. 5, 2003, 498–506, 10.1007/3-540-36268-1_45.
  • [12] T. Kobayashi, Y. Fujiwara, J. Yamakawa, N. Yasufuku and K. Omine, “Mobility performance of a rigid wheel in low gravity environments”, Journal of Terramechanics, vol. 47, no. 4, 2010, 261–274, 10.1016/j.jterra.2009.12.001.
  • [13] P. Lehner, S. Brunner, A. Domel, H. Gmeiner, S. Riedel, B. Vodermayer and A. Wedler, “Mobile manipulation for planetary exploration”. In: 2018 IEEE Aerospace Conference, 2018, 1–11, 10.1109/AERO.2018.8396726.
  • [14] L. Lopes, S. Govindaraj, W. Brinkmann, S. Lacroix, J. Stelmachowski, F. Colmenero, J. Purnell, K. Picton and N. Aouf, “Analogue lunar research for commercial exploitation of in-situ resources and planetary exploration - Applications in the PRO-ACT project”. In: EGU General Assembly Conference Abstracts, 2021, 1–11, 10.5194/egusphere-egu21-9180.
  • [15] P. Sandin, Robot Mechanisms and Mechanical Devices Illustrated, McGraw-Hill/TAB Electronics, 2003.
  • [16] R. Siegwart, I. R. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots, MIT Press, 2011.
  • [17] A. J. Stimpson, M. B. Tucker, M. Ono, A. Steffy and M. L. Cummings, “Modeling risk perception for mars rover supervisory control: Before and after wheel damage”. In: 2017 IEEE Aerospace Conference, 2017, 1–8, 10.1109/AERO.2017.7943871.
  • [18] K. Subrin, T. Bressac, S. Garnier, A. Ambiehl, E. Paquet and B. Furet, “Improvement of the mobile robot location dedicated for habitable house construction by 3D printing”, IFAC-PapersOnLine, vol. 51, 2018, 716–721.
  • [19] M. Trojnacki and P. Dąbek, “Mechanical Properties of Modern Wheeled Mobile Robots”, Journal of Automation, Mobile Robotics and Intelligent Systems, vol. 13, no. 3, 2019, 3–13, 10.14313/JAMRIS/3-2019/21.
  • [20] M. Trojnacki and P. Dąbek, “Studies of dynamics of a lightweight wheeled mobile robot during longitudinal motion on soft ground”, Mechanics Research Communications, vol. 82, 2017, 36–42, 10.1016/j.mechrescom.2016.11.001.
  • [21] Z. Wang, H. Yang, L. Ding, B. Yuan, F. Lv, H. Gao and Z. Deng, “Wheels’ performance of Mars exploration rovers: Experimental study from the perspective of terramechanics and structural mechanics”, Journal of Terramechanics, vol. 92, 020, 23–42, 10.1016/j.jterra.2020.09.003.
  • [22] A. Więckowski, ““JA-WA” – A wall construction system using unilateral material application ith a mobile robot”, Automation in Construction, vol. 83, 2017, 19–28, https://doi.org/10.1016/j.autcon.2017.02.005.
  • [23] “Curiosity – NASA’s Mars Exploration Program”, National Aeronautics and Space Administration, https://mars.nasa.gov/msl/, Accessed on: 2022-08-30.
  • [24] “ESA – Robotic Exploration of Mars”, European Space Agency, https://exploration.esa.int/web/mars/, accessed on: 2022-08-30.
  • [25] “Hadrian X® – Outdoor Construction and Bricklaying Robot from FBR”, https://www.fbr.com.au/view/hadrian-x/, accessed on: 2022-08-30.
  • [26] “A mobile robot for construction sites”, https://www.electricmotorengineering.com/a-mobile-robot-for-construction-sites/, accessed on: 2022-08-30.
  • [27] “Mating/Demating Device - HOTDOCK”, https://www.spaceapplications.com/products/mating--demating-device-hotdock, accessed on: 2022-08-30.
  • [28] “Planetary RObots Deployed for Assembly and Construction Tasks – PRO-ACT”, project documentation (2021).
  • [29] “PRO-ACT: Power of Robots Collaborating in Space Applications”, https://www.youtube.com/watch?v=eVK68jOOuk4, accessed on: 2022-08-30.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36b3a996-bfd5-49bb-a6dc-dfeefccca5f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.