
 
Journal of KONES Powertrain and Transport, Vol. 21, No. 2 2014 

 
 
 

SPATIAL MODEL OF THE UNSPRUNG WHEELED MACHINE’S 
DYNAMIC SYSTEM 

 
Stefan Chwastek 

 
Krakow University of Technology, Institute of Machine Design 

Av. 37, 31-864 Krakow, Poland 
tel.: +48 12 3743360, fax: +48 12 3743409 

e-mail: chwastek@mech.pk.edu.pl  
 

Abstract 

Mobile heavy machines as unsprung vehicles exhibit low dissipation ability, hence the ride even at low speeds 
may give rise to intensive vertical and angular vibration. Vibrations thus produced are mostly in the low-frequency 
range and hence energy dissipation in tires will reduce the vibration intensity in a minor degree only. Particularly 
dangerous situations occur when the road wheels break away from the road surface due to the ’galloping’ effect. 
Kinematic excitation acting on the wheels is mostly uncorrelated stochastic (random) processes, giving rise to the 
"snake meandering" effect. That implies a major restriction on the ride velocity, which negatively affects the machine 
performance. The motion of tired wheels will always involve certain slipping. While investigating the feasibility of 
increasing the efficiency of the vibration reduction systems, one ought to take into account the variable adhesion of 
road wheels due to different dynamic loading acting on the vehicle axles during the ride. This study investigates the 
motion of unsprung mobile machines, taking into account the dynamic processes in the driving system under the 
conditions of the variable adhesion of road wheels. The model of interaction between a tired wheel and the terrain 
takes into account the relationship between the road wheel adhesion factor and the slipping action, as well as the 
impacts of the differential gear on distribution of drive torque. The 3D (spatial) model of a backhoe loader is 
considered. It is a two-axle self-propelled machine on a wheeled chassis. The mathematical model constitutes 
nonlinear and non-stationary differential equations of motion. Their stability is therefore associated with vibration 
intensity. Simulations in the time domain were supported by Matlab-Simulink. The purpose of this study is to improve 
the safety features during the ride of mobile heavy machines, basing on the parametric optimization of the model. 
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1. Physical model of an unsprung wheeled machine 
 

In the context of potential possibility of the “snake meandering” effect during the ride of 
a mobile, wheeled machine, the spatial model of an excavator-loader (Fig. 1) is implicated for 
further considerations. The excavator-loader is an unsprung machine in which the frame is rigidly 
connected to the axles. The front axle can perform independent oscillations relative to the machine 
body, described by coordinate 1. Two local coordinate systems are introduced, the one associated 
with the rocker has its origin – Ow on its axis of rotation, the other system is associated with the 
base of the machine, its origin coinciding with the centre of gravity of the machine – S0. At that 
stage, the flexibility of fluid cells in the implements is neglected. 

The motion of the machine is expressed in the coordinate system relative to the inertial frame, 
which, at the initial moment, coincides with a local system associated with the machine. 
Relationships between the systems are expressed by transformation matrices. Transformation 
matrices for rotation relative to the main axis of the system are given below [3]: 
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Fig. 1. Physical model of a two-axle wheeled machine 

 
Respective coordinates of joint "Ow" and the coordinates of the wheel axis “Oi” with respect to 

the moving coordinates system associated with the body of the machine are obtained basing on 
Fig. 1: 
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When Ji, Jj are Jacobian matrices, and V0 = [V0x V0y V0z]T – is the velocity vector of the centre 
of gravity of the machine – S0, the velocity vectors of front and rear wheels respectively are given 
by (8) and (10): 
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Indices i and j correspond to wheel designations in Fig. 1. 
 

2. Model of the drive system including the differential 
 
The dynamics of the machine movement is determined by the properties of its drive system, 

such as torque-velocity characteristic of the engine and power transmission to the wheels in the 
differential. A conventional propulsion system is considered, equipped with a mechanical (manual) 
gearbox, its schematic diagram is not provided here, as it is a widely known solution. The model 
of a differential is shown in Fig. 2. 

 

 
Fig. 2. Differential model 

 
The mass moment of inertia of the drive system J  reduced to the crown wheel is expressed by 

the relationship: 
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 aJrmJ CC
2 ,  (11) 

where: 
mc – total mass of the machine,  
r2s – static radius of the driving wheel, 
Ja – mass moment of inertia of a wheel with the driveshaft, 

 – moment of inertia (normalized with respect to Ja) of the whole kinematic chain formed by 
a crank mechanism engine, clutch, shafts and gears depending to the current gear ratio 
gearing, main basket satellites and both wheels with axle shafts. 

Torque to the drive wheels is effected by the differential whose mass moment of inertia J  is 
given as (12): 
 sa iJJ 2 .  (12) 

Inertia of satellites – Js is omitted as negligible compared to Ja, transmission ratio is = 1. 
The angular velocity of the driving wheel is dependent on the motor loading. The torque vs angular 

velocity characteristic of a diesel engine 3054C Caterpillar, reduced to the crown wheel, is shown in 
Fig. 3. The plot graphed with heavy line  = 1 represents the maximal torque developed for the full 
dose of fuel. For smaller loads, the desired ride velocity is reached with a smaller dose of fuel supplied 

 = . 
 

 
Fig. 3. Torque vs angular velocity of an engine reduced to the to the crown wheel, for variable fuel doses 

 
3. The model of cooperation wheels with the ground 

 
Ride over uneven ground is accompanied by dynamic variable reactions acting on the wheel. 

The vertical response of the roadway surface to loads – Ni, exerted by wheels is shifted in relation 
to the geometric axis of the wheel rotation [2, 6]. 

The magnitude of this eccentricity – ei is a variable quantity as it is related to the dynamic 
wheel radius – riD through a dimensionless resistance factor f i: 
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The value of the rolling resistance of a tired wheel depends on the roadway surface and ride 
velocity. In a narrow range of velocities, the rolling resistance is taken to be constant, dependent 
solely on the roadway surface conditions. 

The notation of damping forces acting in the radial and circumferential directions takes into 
account the dependence between the damping factor in the tire and vibration frequency –  

  4 3, 2, 1, =  :where i,ck ii  (14) 
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where: 
 – coefficient of energy dissipation related to the type of tires, typically   [0.1-0.2],  

ci – stiffness of wheel tires of a given axle in the radial direction.  
Dynamic reactions acting on the wheel sideways were determined using the Dugoff’s model 

[7, 8]. They are related to the pressure values of Ni, and are the result of the combined elastic 
deformation and friction of the tire. The motion of tired wheels will always involve certain 
slipping. Longitudinal forces can be expressed as the product of [1, 2, 4, 6]: 

. 4 2, =  :where i,NST iixixix  (15) 

The longitudinal slip rate – Six expresses the relative difference between linear velocities of the 
axles in the horizontal direction resulting from the rotating motion (no slippage) and the real 
velocity [1, 5]. In the case when i/dt > 0: 
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The relationship between the coefficient of longitudinal road adhesion and the slip rate for 
various roadway conditions is modelled by a bi-parametric function ox(Sx) [2]. 
This function can be determined as long as the maximal coefficient of road adhesion – max

(reached under the critical slippage conditions – Sxkr.) can be found for the given roadway surface. 
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The function ox(Sx) expressed by (5) and (6) is a simplified version of the best known 
descriptions of the tire – road surface impacts: the Magic Formula of Pacejka [1, 7], the Dugoff 
Tire Model [1, 7], the LuGre model [8]. Selected plots of the function ox(Sx) for diverse road 
conditions are shown in Fig 4. The lateral slip rate – Siz depends on the longitudinal slip and the 
slip angle – ai of ith wheel [1, 7, 8]:

1 1 i
iz xi i xi

ix

VS S tg
V

S z , : i 2, 4. (19) 

Lateral reactions can be expressed in an analogous relationship to (15): 
, where:  = 2, 4 .iz iz iz iT S N i  (20) 

The relationship between the coefficient of lateral road adhesion and the slip rate – iz(Siz) for 
various roadway conditions is taken from [1, 4, 6].  

Fig. 4. Coefficient of road adhesion in longitudinal direction vs. slip rate for various roadway surfaces 

, 
. 
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4. Vibrations of an unsprung wheeled machine 
 

The equations of motion of the vehicle shown in Fig. 1 during the ride, taking into account 
the distribution of the torque to the right and left drive wheel via the differential depending on the 
actual adhesion conditions are given below: 
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where: 
JJJJJJmmmdiag zyxxCCC 0010M  – matrix of inertia,  

Jx0, Jy0, Jz0   – total inertia moments of the machine with respect to the main axes 
      of the machine, 

Jx1     – mass moment of inertia with respect to the rocker pin, 
      – the angular velocity of the crown wheel, 

M     – torque reduced to the crown wheel, 

42M  – resisting torques on the drive shafts. 
Computer simulations, supported by Matlab-Simulink and Mathcad, were performed for the 

applied kinematic excitations. The angular velocity of the driving wheel in the steady state – s 
was taken to be 10 rad/s. Parameters of the machine configured as in Fig. 1 are: mC = 9420 [kg], 
Jx0 = 2273 [kgm2], Jx1 = 12.3 [kgm2], Jy0 = 3370 [kgm2], Jz0 = 10427 [kgm2], L 1 = 0.9509 [m], 
L 2 = 1.1491 [m], h 1 = 0.5095 [m], h 2 = 0.3095 [m], r s1 = 0.4335 [m], r s2 = 0.6701 [m], 
c 1 = 7.676 .105 [N/m], c 2 = 1.383 .106 [N/m], f 1 = f 2 = 0.03 [-  = 0.2 [-]. 

The tire stiffness in the radial direction and then in longitudinal direction was obtained by 
applying procedures outlined in [1, 4].The characteristics obtained for simulations of a ride with 
a full load bucket – 2000 [kg] are graphed with heavy thick line, with fine lines – for the ride with 
no excavated material. At this stage, the main focus is on simulating the effect of the tear-off front 
and rear wheels. Dynamic pressure normalization was done with respect to the static values. 
 

 
Fig. 5. Normalized dynamic pressure of the rear wheels in the function of time 
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Figure 5 reveals a strong tendency to tear the wheels of the rear axle from the ground at speeds 
below 24 km /h. The presence of bucket load practically does not change this trend. 
 

  
Fig. 6 Normalized dynamic pressure of the front wheels in the function of time 

 
As shown in Fig. 6, ride without loading the bucket introduces the risk of a loss of steering 

when the road wheels break away from the road surface. Driving with excavated material 
improves the steering behaviour of the machine by increasing the pressure of the front axle. 

Since the dynamic component of pressure acting upon the axle wheels during the ride with and 
without bucket load exceed the static component – the ride becomes irregular power and the 
forward motion becomes “jerky,” as shown in Fig. 7. Because of the energy loss due to friction 
between wheels and uneven surfaces, the vehicle moves forward at an average rate of a few 
percent lower than if the ride took place in the same environment and loading conditions, but over 
a smooth surface. Characteristic inflection points corresponds to the moments when the rear 
wheels of break away from the road surface, in the conditions where N2(4) = 0. 
 

 
Fig. 7. Changing the driving speed with and without load bucket normalized to the speed of movement on the smooth surface 

 
Flexibility of wheel tires significantly reduces the dynamic loading of the driving system. 
Kinematical interactions of tires with the roadway surface are implemented in the conditions of 

variable road adhesion and slip rate. During one cycle of vibration, both the coefficient of road 
adhesion and the slip rate change both their magnitude and sign. 

 
5. Conclusion 

 
The spatial model of unsprung wheeled machine considered in this study allows the analysis of 

safety and comfort features during the ride, proving the susceptibility of unsprung machines on 
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wheeled chassis to “galloping.” Its full potential as a spatial model will be used in research on 
“snake meandering” effect" and motion stability while driving around a curve. 

Simulation results shown in Fig. 5-7 agree well with observations of the behaviour of machines 
on the road. Undoubtedly, there is a need for road tests for verification of the simulation model so 
that the model should be used as a tool in parametric optimization. 
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