PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza za pomocą siatki Boltzmanna wpływu kąta pochylenia oraz liczby Prandtla na mieszaną konwekcję w ukośnej szczelinie domkniętej ruchomą pokrywą
Języki publikacji
EN
Abstrakty
EN
The laminar mixed convection in a two-dimensional rectangular inclined cavity with moving top lid is investigated using the double population thermal lattice Boltzmann method (LBM) at different values of the Richardson number, inclination angle and the Prandtl number. In this problem, velocity components are changed by both buoyancy forces and the inclination angle of the cavity. Comparison of the present results with other available data show good agreement. As the results, the velocity and temperature profiles, the Nusselt number, streamlines and isotherms are presented and discussed. It is shown that the increase of Prandtl number enhances the heat transfer rate, especially at higher values of inclination angle and Richardson number. Moreover, the average Nusselt number at the upper limit of the considered range of the Richardson and Prandtl numbers variability increases by a factor of 9.
PL
W pracy zajęto się problemem mieszanej konwekcji laminarnej w dwuwymiarowej, prostokątnej i ukośnie usytuowanej szczelinie domkniętej od góry ruchomą pokrywą. W badaniach zastosowano metodę siatki termicznej Boltzmanna (LBM) podwójnej populacji, uwzględniając rożne wartości liczby Richardsona, kąta pochylenia szczeliny oraz liczby Prandtla. W rozważanym zagadnieniu, składowe prędkości zostały poddane zmianom indukowanym siłami wyporu oraz kątem pochylenia szczeliny. Porównanie otrzymanych wynikow analizy z dostępnymi w literaturze danymi wykazało dobrą zgodność. Rezultatem badań w pracy są także profile rozkładu prędkości i temperatury, liczba Nusselta, linie prądu oraz izotermy, które szczegółowo przedyskutowano. Pokazano, że wzrost liczby Prandtla zwiększa transfer ciepła, zwłaszcza dla wyższych wartości kąta pochylenia szczelin i liczby Richardsona. Co więcej, średnia liczba Nusselta przy górnych wartościach przyjętego zakresu zmienności liczb Richardsona i Prandtla wzrasta 9-krotnie.
Słowa kluczowe
Rocznik
Strony
447--462
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
autor
  • University of Sistan and Baluchestan, Department of Mechanical Engineering, Zahedan, Iran
  • Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza Universit`a di Roma, Rome, Italy
autor
  • Foolad Institute of Technology, Fooladshahr, Esfahan, Iran
Bibliografia
  • 1. Basak T., Roy S., Sharma P.K., Pop I., 2009, Analysis of mixed convection flows within a square cavity with linearly heated side wall(s), Int. J. of Heat and Mass Transfer, 52, 2224-2242
  • 2. Bhatnagar P.L., Gross E.P., Krook M., 1954, A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system, Phys. Rev., 94, 511-1954
  • 3. Bogusławski L., 2007, Estimation of the influence of inflow turbulence on heat convection from a sphere surface, Journal of Theoretical and Applied Mechanics, 45, 505-511
  • 4. Buick J.M., Greated C.A., 2000, Gravity in a lattice Boltzmann model, Phys. Review E, 61, 5307-5319
  • 5. Cercignani C., 1988, The Boltzmann Equation and its Applications, Applied Mathematical Sciences 67, Springer-Verlag, New York
  • 6. Chen H., Chen S., Mathaaeus W.M., 1992, Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Physical Review A, 45, 5339-5342
  • 7. Chen S., Doolen G., 1998, Lattice Boltzmann method for fluid flows, Annual Rev. Fluid Mech., 30, 329-364
  • 8. Cheng M., Hung K.C., 2002, Lattice Boltzmann method on nonuniform mesh, Recent Advances in Computational Science And Engineering, 196-199
  • 9. Davis G.V., 1983, Natural convection of air in a square cavity: a benchmark numerical solution, Int. J. Numer. Methods Fluids, 3, 249-264
  • 10. D’Orazio A., Corcione M.,Celata G., 2004, Application to natural convection enclosed floks of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition, Int. J. of Thermal Science, 43, 575-586
  • 11. D’Orazio A., Succi S., Arrighetti C., 2003, Lattice Boltzmann simulation of open flows with heat transfer, Phys. of Fluids, 15, 2778-2780
  • 12. Du H.Y., Chai Z.H., Shi B.C., 2011, Lattice Boltzmann study of mixed convection in a cubic cavity, Commun. Theor. Phys., 56, 144-150
  • 13. Fattahi E., Farhadi M., Sedighi K., 2011, Lattice Boltzmann simulation of mixed convection heat transfer in eccentric annulus, Int. Communications in Heat and Mass Transfer, 38, 1135-1141
  • 14. Grucelski A., Pozorski J., 2012, Lattice Boltzmann simulation of fluid flow in porous media of temperature-affected geometry, Journal of Theoretical and Applied Mechanics, 50, 193-214
  • 15. Guo Y., Bennacer R., Shen S., Ameziani D., Bouzidi M., 2010, Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method, Int. J. of Numerical Methods for Heat and Fluid Flow, 20, 130-148
  • 16. Guo Z., Zheng C., Shi B., Zhao T.S., 2007, Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model, Phys. Rev. E, 75 (036704) 1-15
  • 17. Habchi S., Acharya S., 1986, Laminar mixed convection in a partially blocked, vertical channel, Int. J. Heat Mass Transfer, 29, 1711-1722
  • 18. He X., Luo L.S., 1997, Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation, J. of Statistical Phys., 88, 927-944
  • 19. He X., Chen S., Doolen G., 1998, A novel thermal model for the lattice Boltzmann method in incompressible limit, J. of Comp. Phys., 146, 282-300
  • 20. Iwatsu R., Hyun J.M., Kuwahara K., 1993, Mixed convection in a driven cavity with a stable vertical temperature gradient, Int. J. Heat Mass Transfer, 36, 1601-1608
  • 21. Jafari M., Naysari A., Bodaghi K., 2011, Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity, World Academy of Science Engineering and Technology, 78, 493-498
  • 22. Kandlikar S.G., Garimella S., Li D., Colin S., King M., 2006, Heat Transfer and Fluid Flow in Minichannels and Microchannels, First ed., Britain: Elsevier
  • 23. Kao P.H., Yang R.J., 2007, Simulating oscillatory flows in Rayleigh-B´enard convection using the lattice Boltzmann method, Int. J. of Heat and Mass Transfer, 50, 3315-3328
  • 24. Kao P.H., Yang R.J., 2008, An investigation into curved and moving boundary treatments in the lattice Boltzmann method, Journal of Computational Physics, 227, 5671-5690
  • 25. Karimipour A., Hossein Nezhad A., D’Orazio A., Shirani E., 2012, Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method, Int. Journal of Thermal Sciences, 54, 142-152
  • 26. Kefayati GH.R., Hosseinizadeh S.F., Gorji M., Sajjadi H., 2011, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, Int. Communications in Heat and Mass Transfer, 38, 798-805
  • 27. Kuzmin A., Mohamad A., 2009, Multiphase Simulations with Lattice Boltzmann Scheme, Ph.D. thesis, University of Calgary, Alberta
  • 28. Kuznik F., Vareilles J., Rusaouen G., Krauss G., 2007, A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity, International Journal of Heat and Fluid Flow, 28, 862-870
  • 29. Mezrhab A., Jami M., Abid C., Bouzidi M., Lallemand P., 2006, Lattice-Boltzmann model ling of natural convection in an inclined square enclosure with partitions attached to its cold wall, Int. J. of Heat and Fluid Flow, 27, 456-465
  • 30. Mohamad A.A., 2011, Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes, Springer, Canada
  • 31. Nemati H., Farhadi M., Sedighi K., Fattahi E., Darzi A.A.R., 2010, Lattice Boltzmann simulation of nanofluid in lid-driven cavity, Int. Communications in Heat and Mass Transfer, 37, 1528-1534
  • 32. Niu X.D., Shu C., Chew Y.T., 2007, A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows, Comput. Fluids, 36, 273-281
  • 33. Oran E.S., Oh C.K., Cybyk B.Z., 1998, Direct simulation Monte Carlo: recent advances and applications, Ann. Rev. Fluid Mech., 30, 403-441
  • 34. Parmigiani A., Huber C., Chopard B., Latt J., Bachmann O., 2009, Application of the multi distribution function lattice Boltzmann approach to thermal flows, Eur. Phys. J. Special Topics, 171, 37-43
  • 35. Peng, Y., Shu, C., Chew, Y.T., 2003, Simplified thermal lattice Boltzmann model for incompressible thermal flows, Physical Review E, 68, 026701-1-8
  • 36. Peng G., Xi H., Duncan C., Chou S.H., 1999, Finite volume scheme for the lattice Boltzmann method on unstructured meshes, Phys. Rev. E, 59, 4675-4682
  • 37. Qian Y., Humi`eres D., Lallemand P., 1992, Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17, 479-484
  • 38. Rosdzimin A.R.M., Zuhairi S.M., Azwadi C.S.N., 2010, Simulation of mixed convective heat transfer using lattice Boltzmann method, Int. J. of Automotive and Mechanical Engineering, 2, 130-143
  • 39. Sharif M.A.R., 2007, Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom, Applied Thermal Engineering, 27, 1036-1042
  • 40. Shi Y., Zhao T.S., Guo Z.L., 2006, Lattice Boltzmann method for incompressible flows with large pressure gradients, Phys. Review E, 73, 026704-1-11
  • 41. Sivasankaran S., Sivakumar V., Prakash P., 2010, Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls, Int. J. of Heat and Mass Transfer, 53, 4304-4315
  • 42. Tallavajhula A., Kharagpur I., Ruede U., Bartuschat D., 2011, Introduction to the Lattice Boltzmann Method, 10th Indo-German Winter Academy
  • 43. Tian Z., Chen S., Zheng C.G., 2010, Lattice Boltzmann simulation of gaseous finite-Knudsen microflows, Int. J. Mod. Phys., 21, 769-783
  • 44. Ubertini S., Succi S., 2008, A generalised lattice Boltzmann equation on unstructured grids, Communications in Computational Physics, 3, 342-356
  • 45. Yang Y.T., Lai F.H., 2011, Numerical study of flow and heat transfer characteristics of aluminawater nanofluids in a microchannel using the lattice Boltzmann method, Int. Communications in Heat and Mass Transfer, 38, 607-614
  • 46. Zou Q., He X., 1997, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 1591-1598
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36b0df98-7781-458f-ba08-c4838c3fd0c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.