Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work a fouling study of polypropylene membranes used for microfiltration of glycerol solutions fermented by Citrobacter freundii bacteria was presented. The permeate free of C. freundii bacteria and having a turbidity in the range of 0.72–1.46 NTU was obtained. However, the initial permeate flux (100–110 L/m2h at 30 kPa of transmembrane pressure) was decreased 3–5 fold during 2–3 h of process duration. The performed scanning electron microscope observations confirmed that the filtered bacteria and suspensions present in the broth formed a cake layer on the membrane surface. A method of periodical module rinsing was used for restriction of the fouling influence on a flux decline. Rinsing with water removed most of the bacteria from the membrane surface, but did not permit to restore the initial permeate flux. It was confirmed that the irreversible fouling was dominated during broth filtration. The formed deposit was removed using a 1 wt% solution of sodium hydroxide as a rinsing solution.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
56--64
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Inorganic Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
Bibliografia
- 1. Cui, Z.F. & Muralidhara, H.S. (Eds.). (2010). Membrane technology. A practical guide to membrane technology and applications in food and bioprocessing. Oxford, UK: Elsevier.
- 2. Sadr Ghayeni, S.B., Beatson, P.J., Fane, A.J. & Schneider, R.P. (1999). Bacterial passage through microfiltration membranes in wastewater applications. J. Membr. Sci. 153, 71–82. DOI: 10.1016/S0376-7388(98)00251-8.
- 3. Avci, F.G., Huccetogullari, D. & Azbar, N. (2014). The effects of cell recycling on the production of 1,3-propanediol by Klebsiella pneumonia. Bioprocess Biosyst. Eng. 37, 513–519. DOI: 10.1007/s00449-013-1018-z.
- 4. Noworyta, A., Trusek-Holownia, A., Mielczarski, S. & Kubasiewicz-Ponitka, M. (2006). An integrated pervaporation-biodegradation process of phenolic wastewater treatment. Desalination. 198, 191–197. DOI: 10.1016/j.desal.2006.01.025.
- 5. Tomczak, W. (2014). Badania rozdzielania brzeczek fermentacyjnych technikami membranowymi (Studies of broths separation by membrane processes). PhD thesis, West Pomeranian University of Technology, Szczecin.
- 6. Sadr Ghayeni, S.B., Beatson, P.J., Schneider, R.P. & Fane, A.G. (1998). Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (MF-RO): Preliminary performance data and microbiological aspects of system operation. Desalination. 116, 65–80. DOI: 10.1016/S0011-9164(98)00058-7.
- 7. Kumar, R. & Ismail, A.F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 132, 1–20. DOI: 10.1002/app.42042.
- 8. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination. 222, 59–65, DOI: 10.1016/j.desal.2007.01.129.
- 9. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination. 220, 273–289. DOI: 10.1016/j.desal.2007.01.034.
- 10. Ulbricht, M., Ansorge, W., Danielzik, I., König, M. & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of poly-phenols and polysaccharides. Sep. Purif. Technol. 68, 335–342, DOI: 10.1016/j.seppur.2009.06.004.
- 11. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Food Bioprod. Proc. 77, 107–113. DOI: 10.1205/096030899532394.
- 12. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol. 63, 284–289. DOI: 10.1111/j.1471-0307.2010.00582.x.
- 13. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.
- 14. Kroll, S., Treccani, L., Rezwan, K. & Grathwohl, G. (2010). Development and characterisation of functionalised ceramic microtubes for bacteria filtration. J. Mem. Sci. 365, 447–455. DOI: 10.1016/j.memsci.2010.09.045.
- 15. Gryta, M., Markowska-Szczupak, A., Bastrzyk, J. & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. J. Mem. Sci. 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.
- 16. Brandes, C., Treccani, L., Kroll, S. & Rezwan, K. (2014). Gel casting of free-shapeable ceramic membranes with adjustable pore size for ultra- and microfiltration. J. Am. Ceram. Soc. 97, 1393–1401. DOI: 10.1111/jace.12877.
- 17. Metsoviti, M., Zeng, An-P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163, 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.
- 18. Ferreira, T.F., Ribeiro, R.R., Ribeiro, C.M.S., Freire, D.M.G. & Coelho, M.A.Z. (2012). Evaluation of 1,3-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Eng. Transac. 27, 157–162. DOI: 10.3303/CET1227027.
- 19. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod. 7, 281–289. DOI: 10.1016/S0926-6690(97)00059-9.
- 20. Colin, T. Bories, A. & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201–205, DOI: 10.1007/s002530000365.
- 21. Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl. Microbiol. Biotechnol. 35, 701–705, DOI: 10.1007/BF00169880.
- 22. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Günzel, B. & Deckwer, W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911. DOI: 10.1002/bit.260440806.
- 23. Bastrzyk, J. & Gryta, M. (2015). Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalin. Water Treat. 53, 319–329. DOI: 10.1080/19443994.2013.839402.
- 24. Rodrigues, C., Cavaco Morão, A.I., de Pinho, M.N. & Geraldes, V. (2010). On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes. J. Membr. Sci. 346, 1–7. DOI: 10.1016/j.memsci.2009.08.023.
- 25. Wang, J.T., Chang, S.C., Chen, Y.C. & Luh, K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. J. Microbiol. Immunol. Infect. 33, 258–62.
- 26. Chaudhry, W.N., Haq, I.U., Andleeb, S. & Qadri, I. (2014). Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J. Basic Microbiol. 54, 531–541. DOI: 10.1002/jobm.201200710.
- 27. Chung, J., Kang, J.S., Jurng, J.S., Jung, J.H. & Kim, B.Ch. (2015). Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67, 303–308. DOI:10.1016/j.bios.2014.08.039.
- 28. Bastrzyk, J., Gryta, M. & Karakulski, K, (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68, 757–765. DOI: 10.2478/s11696-013-0520-8.
- 29. Lebleua, N., Roquesb, Ch., Aimara, P. & Causseranda, Ch. (2009). Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J. Mem. Sci. 326, 178–185. DOI: 10.1016/j.memsci.2008.09.049.
- 30. Gryta, M. (2007). Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 287, 67–78. DOI:10.1016/j.memsci.2006.10.011.
- 31. Hoek, E.M.V., Bhattacharjee, S. & Elimelech, M. (2003). Effect of membrane surface roughness on colloid–membrane DLVO interactions. Langmuir 19, 4836–4847. DOI: 10.1021/la027083c.
- 32. Mohammad, A.W., Basha, R.K. & Leo, C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. J. Food Eng. 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.
- 33. Xu, P., Drewes, J.E., Kim, T.U., Bellona, C. & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications, J. Membr. Sci. 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.
- 34. Schneider, R., Hölz, W., Wollbeck, R. & Ripperger, S. (1988). Membranes and modules for transmembrane distillation. J. Membr. Sci. 39, 25–42. DOI: DOI:10.1016/S0376-7388(00)80992-8.
- 35. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak, M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration, Pol. J. Chem. Technol. 16, 117–122. DOI: 10.2478/pjct-2014-0081.
- 36. Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D. & Starov, V. (2004). Sieve mechanism of microfiltration separation. Coll. Surf., A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.
- 37. Lee, D.J., Chen, G.Y., Chang, Y.R. & Lee, K.R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. J. Taiwan Inst. Chem. Eng. 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.
- 38. Kim, Y.J., Yun, T., Lee, S., Kim, D. & Kim, J. (2014). Accelerated testing for fouling of microfiltration membranes using model foulants. Desalination. 343, 113–119 DOI: 10.1016/j.desal.2014.01.016.
- 39. Pollice, A., Brookes, A., Jefferson, B. & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors a review of recent literature. Desalination 174, 221–230. DOI: 0.1016/j.desal.2004.09.012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36b055d6-9fc7-4c60-b7d7-e90b35af280f