PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of T-Splitter on the Laminar Flow Field around Cylinder Pier

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The hydrodynamic pattern, which surrounds the pier near a splitter that has T-shape, is investigated by adopting a numerical method and using ANSYS Fluent Software to achieve computation. The essential objective of this paper refers to revealing the behavior of the hydrodynamic field around the pier due to the existence of the upstream splitter plate. The T-splitter plate has not been used in previous works for controlling the flow field around the cylinder body. The main assumptions adopted in solving the hydrodynamic problem are incompressible, steady, and laminar flow. Reynolds number values are taken from 40 to 200 to guarantee laminar flow with laminar vortex street. The numerical investigation focuses on two main variables. These variables are the horizontal distance between the rear portion of a splitter and the pier center and bubble length. The numerical study comprises pressure contours, water velocity contours, and streamlines. Results reveal that bubbles are generated and developed due to the existence of the splitter. Four bubbles are generated, two of them are formed in the region between the splitter rear portion and pier leading portion and the other two bubbles are formed at the cylindrical pier wake region. The size and length of these four bubbles are dominated by the Reynolds number, these bubbles are non-symmetrical. It is revealed from the solution that with the rise in Reynolds number values then the disturbance will be increased simultaneously. The horizontal distance dominates the hydraulic response, which is described by the streamlines, pressure contours, and water flow contours. Furthermore, the Reynolds number has a significant influence on the pressure contours, water flow contours, and streamlines. Finally, a correlation equation is derived relying on bubble length, horizontal distance, and Reynolds number.
Słowa kluczowe
Twórcy
  • Basra Engineering Technical College, Southern Technical University, Basra, Iraq
  • Basra Engineering Technical College, Southern Technical University, Basra, Iraq
  • Basra Engineering Technical College, Southern Technical University, Basra, Iraq
Bibliografia
  • 1. Strykowski P.J., Sreenivasan K.R. On the formation and suppression of vortex shedding at low Reynolds numbers. Journal of Fluid Mechanics. 1990; 218(1): 71–107. https://doi.org/10.1017/s0022112090000933.
  • 2. Kwon K., Choi H. Control of laminar vortex shedding behind a circular cylinder using splitter plates. Physics of Fluids. 1996; 8(2): 479–486. https://doi.org/10.1063/1.868801.
  • 3. Chen J.H. Laminar separation of flow past a circular cylinder between two parallel plates. Proc. Natl Sci. Counc. ROC A. 2000; 24: 341–351.
  • 4. Hwang J-Y., Yang K-S. Drag reduction on a circular cylinder using dual detached splitter plates. Journal of Wind Engineering and Industrial Aerodynamics. 2007; 95(7): 551–564. https://doi.org/10.1016/j.jweia.2006.11.003.
  • 5. Sen S., Mittal S., Biswas G. Steady separated flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics. 2009; 620: 89–119. https://doi.org/10.1017/s0022112008004904.
  • 6. Singha S., Sinhamahapatra K.P. Flow past a circular cylinder between parallel walls at low reynolds numbers. Ocean Engineering. 2010; 37(8–9): 757–769. https://doi.org/10.1016/j.oceaneng.2010.02.012.
  • 7. Sato M., Kobayashi T. A fundamental study of the flow past a circular cylinder using Abaqus/CFD.SIMULIA Community Conference 2012.
  • 8. Noor D.Z., Widiyono E, Suhariyanto, Rusdiyana L., Sarsetiyanto J. Laminar flow past a circular cylinder: Reduction of drag and fluctuating lift using upstream and downstream rods. Applied Mechanics and Materials. 2014; 493: 9–14. https://doi.org/10.4028/www.scientific.net/amm.493.9.
  • 9. Khassaf S. I, Obied N. A. Experimental study: bridge pier protection against local scour using guide panels. IOP Conference Series: Materials Science and Engineering. 2018; 433: 012006. https://doi.org/10.1088/1757-899x/433/1/012006.
  • 10. Yamini O. A., Mousavi S.H., Kavianpour M.R., Movahedi A. Numerical modeling of sediment scouring phenomenon around the offshore wind turbine pile in marine environment. Environmental Earth Sciences. 2018; 77(23): 1–15. https://doi.org/10.1007/s12665-018-7967-4.
  • 11. Abdulhussein I. A., Qasim R. M., Al-Asadi K. Pier scouring reduction using a strip guide flow panel device. RUDN Journal of Engineering Researches. 2019; 20(3): 229–235. https://doi.org/10.22363/2312-8143-2019-20-3-229-235.
  • 12. Alizadeh A, Jafarmadar S, Jebrail Zekri H. Use of one and two horizontal plates to reduce the drag force on the rigid cylinder located inside the channel: approach of the immersed interface method. Advances in Science and Technology Research Journal. 2019; 13(4): 188–193. doi:10.12913/22998624/111803.
  • 13. Zhou X., Wang JJ, Hu Y. Experimental investigation on the flow around a circular cylinder with upstream splitter plate. Journal of Visualization. 2019; 22(4): 683–695. https://doi.org/10.1007/s12650-019-00560-x.
  • 14. Mishra A., Hanzla M., De A. Passive control of the onset of vortex shedding in flow past a circular cylinder using slit. Physics of Fluids. 2020; 32(1): 013602. https://doi.org/10.1063/1.5132799.
  • 15. Gumgum F., Guney M.S. Effect of sediment feeding on live-bed scour around circular bridge piers. Civil Engineering Journal. 2021; 7(5): 906–914. https://doi.org/10.28991/cej-2021-03091699.
  • 16. Jabbar T.A., Qasim R.M., Mohammed B.A. The impact of the vane angle on the hydraulic behaviour around the cylinder. In: International MultiDisciplinary Conference-Integrated Sciences and Technologies, Sakarya, Turkey 2021. https://doi.org/10.4108/eai.7-9-2021.2315298.
  • 17. Qasim R.M., Jabbar T.A., Abdulhussein I.A., Flow field simulation between angle vane and cylinder. In: International Multi-Disciplinary ConferenceIntegrated Sciences and Technologies, Sakarya, Turkey 2021. https://doi.org/10.4108/eai.7-9-2021.2315181.
  • 18. Qasim, R.M., Jabbar, T.A., An analytic study of the effect of a vane on the hydraulic field around a cylinder. Incas Bulletin, 2021; 13(3): 123–139. https://doi.org/10.13111/2066-8201.2021.13.3.11.
  • 19. Sumer B.M., Fredsoe J. Hydrodynamics around cylindrical structures (revised edition). World Scientific, 2006.
  • 20. Dahkil S. F., Gabbar T. A., Jaber D. K. Numerical study of the initial pressure and diameters ratio effect on the jet ejector performance. Basra Journal of Engneering Sciences. 2014; 14(1): 122–135.
  • 21. Rajani B. N., Kandasamy A., Majumdar S. Numerical simulation of laminar flow past a circular cylinder. Applied Mathematical Modelling. 2009; 33(3): 1228–1247. https://doi.org/10.1016/j.apm.2008.01.017.
  • 22. Sharma B., Barman R. N. Steady laminar flow past a slotted circular cylinder. Physics of Fluids. 2020; 32(7): 073605. https://doi.org/10.1063/5.0007958.
  • 23. Hamielec A. E., Raal J. D. Numerical studies of viscous flow around circular cylinders. Physics of Fluids. 1969; 12(1): 11–17.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36aee4fb-9ecd-41bd-a10b-f60b7d940946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.