PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Titanium dioxide as a safe additive to sunscreen emulsions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Titanium dioxide with its ability to be a UV light blocker is commonly used as a physical sunscreen in the cosmetic industry. However, the safety issues of TiO2 application should be considered more in-depth, e.g., UV light-induced generation of reactive oxygen species which can cause DNA damage within skin cells. The proper modification of titanium dioxide to significantly limit its photocatalytic properties can contribute to the safety enhancement. The modification strategies including the process conditions and intrinsic properties of titanium dioxide were discussed. The selected examples of commercially available TiO2 materials as potential components of cosmetic emulsions dedicated for sunscreens were compared in this study. Only rutile samples modified with Al2O3 and/or SiO2 showed inhibition of photocatalytic activity.
Rocznik
Strony
483--–490
Opis fizyczny
Bibliogr. 24 poz., il., tab., wykr.
Twórcy
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznan, Poland
Bibliografia
  • 1. Bai Y., Li Z., Cheng B., Zhang M., Su K., 2017. Higher UV-shielding ability and lower photocatalytic activity of TiO2@SiO2/APTES and its excellent performance in enhancing the photostability of poly(𝑝-phenylene sulfide). RSC Adv., 7, 21758–21767. DOI: 10.1039/c6ra28098f
  • 2. Carlotti M.E., Ugazio E., Sapino S., Fenoglio I., Greco G., Fubini B., 2009. Role of particle coating in controlling skin damage photoinduced by titania nanoparticles. Free Radical Res., 43, 312–322. DOI: 10.1080/10715760802716633.
  • 3. Carp O., Huisman C.L., Reller A., 2004. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem., 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.
  • 4. Cheepborisutikul S.J., Ogawa M., 2021. Suppressing the photocatalytic activity of titania by precisely controlled silica coating. Inorg. Chem., 60, 6201–6208. DOI: 10.1021/acs.inorgchem.0c03476.
  • 5. Cross S.E., Innes B., Roberts M.S., Tsuzuki T., Robertson T.A., McCormick P., 2007. Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol., 20, 148–154. DOI: 10.1159/000098701.
  • 6. Ghumro S.S., Lal B., Pirzada T., 2022. Visible-light-driven carbon-doped TiO2-based nanocatalysts for enhanced activity toward microbes and removal of dye. ACS Omega, 7, 4333–4341. DOI: 10.1021/acsomega.1c06112.
  • 7. Guo J., Van Bui H., Valdesueiro D., Yuan S., Liang B., Van Ommen J., 2018. Suppressing the photocatalytic activity of TiO2 nanoparticles by extremely thin Al2O3 films grown by gas-phase deposition at ambient conditions. Nanomaterials, 8, 61. DOI: 10.3390/nano8020061.
  • 8. Guo J., Yuan S., Yu Y., van Ommen J.R., Van Bui H., Liang B., 2017. Room-temperature pulsed CVD-grown SiO2 protective layer on TiO2 particles for photocatalytic activity suppression. RSC Adv., 7, 4547–4554. DOI: 10.1039/c6ra27976g.
  • 9. Lee W.A., Pernodet M., Li B., Lin C.H., Hatchwell E., Rafailovich M.H., 2007. Multicomponent polymer coating to block photocatalytic activity of TiO2 nanoparticles. Chem. Commun., 45, 4815–4817. DOI: 10.1039/b709449c.
  • 10. Lewicka Z.A., Yu W.W., Oliva B.L., Contreras E.Q., Colvin V.L., 2013. Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J. Photochem. Photobiol., A, 263, 24–33. DOI: 10.1016/j.jphotochem.2013. 04.019.
  • 11. Livraghi S., Corazzari I., Paganini M.C., Ceccone G., Giamello E., Fubini B., Fenoglio I., 2010. Decreasing of oxidative potential of TiO2 nanoparticles through modification of the surface with carbon: a new strategy for the production of safe UV filters. Chem. Commun., 46, 8478–8480. DOI: 10.1039/C0CC02537B.
  • 12. Morsella M., d’Allessandro N., Lanterna A.E., Scaiano J.C., 2016. Improving the sunscreen properties of TiO2 through an understanding of its catalytic properties. ACS Omega, 1, 464–469. DOI: 10.1021/acsomega.6b00177.
  • 13. Regiel-Futyra A., Kus-Liśkiewicz M., Wojtyła S., Stochel G., Macyk W., 2015. The quenching effect of chitosan crosslinking on ZnO nanoparticles photocatalytic activity. RSC Adv., 5, 80089–80097. DOI: 10.1039/C5RA12667C.
  • 14. Ricci A., Chrétien M.N., Maretti L., Scaiano J.C., 2003. TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles. Photochem. Photobiol. Sci., 2, 487–492. DOI: 10.1039/B212 815B.
  • 15. Serpone N., Dondi D., Albini A., 2007. Inorganic and organic UV filters: Their role and efficiacy in sunscreens and suncare products. Inorg. Chim. Acta, 360, 794–802. DOI: 10.1016/j.ica.2005.12.057.
  • 16. Serpone N., Salinaro A., Horikoshi S., Hidaka H., 2006. Beneficial effects of photo-inactive titanium dioxide specimens on plasmid DNA, human cells and yeast cells exposed to UVA/UVB simulated sunlight. J. Photochem. Photobiol., A, 179, 200–212. DOI: 10.1016/j.jphotochem.2005.08.017.
  • 17. Siddiquey I.A., Furusawa T., Sato M., Honda K., Suzuki N., 2008. Control of the photocatalytic activity of TiO2 nanoparticles by silica coating with polydiethoxysiloxane. Dyes Pigm., 76, 754–759. DOI: 10.1016/j.dyepig.2007. 01.020.
  • 18. Slomberg D.L., Catalano R., Ziarelli F., Viel S., Bartolomei V., Labille J., Masion A., 2020. Aqueous aging of a silica coated TiO2 UV filter used in sunscreens: investigations at the molecular scale with dynamic nuclear polarization NMR. RSC Adv., 10, 8266–8274. DOI: 10.1039/D0RA00595A.
  • 19. Smijs T.G., Pavel S., 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechol. Sci. Appl., 4, 95–112. DOI: 10.2147/NSA.S19419.
  • 20. Tiano L., Armeni T., Venditti E., Barucca G., Mincarelli L., Damiani E., 2010. Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Radical Biol. Med., 49, 408–415. DOI: 10.1016/j.freeradbiomed.2010.04.032.
  • 21. Urkasame K., Yoshida S., Takanohashi T., Iwamura S., Ogino I., Mukai S.R., 2018. Development of TiO2-SiO2 photocatalysts having a microhoneycomb structure by the ice templating method. ACS Omega, 3, 14274–14279. DOI: 10.1021/acsomega.8b01880.
  • 22. Wakefield G., Green M., Lipscomb S., Flutter B., 2004. Modified titania nanomaterials for sunscreen applications – reducing free radical generation and DNA damage. Mater. Sci. Technol., 20, 985–988. DOI: 10.1179/026708304225019803.
  • 23. Xiao J., Chen W., Wang F., Du J., 2013. Polymer/TiO2 hybrid nanoparticles with highly effective UV-screening but eliminated photocatalytic activity. Macromolecules, 46, 375–383. DOI: 10.1021/ma3022019.
  • 24. Yu Y., Zhu Y., Guo J., Yue H., Zhang H., Liu C., Tang S., Liang B., 2018. Suppression of TiO2 photocatalytic activity by low-temperature pulsed CVD-grown SnO2 protective layer. Ind. Eng. Chem. Res., 57, 8679–8688. DOI: 10.1021/acs.iecr.8b00270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36ab7ad0-89a9-4ce1-b003-dfbb7b67374a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.