PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Humanoid robot path planning using rapidly explored random tree and motion primitives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Path planning is an essential function of the control sy‐ stem of any mobile robot. In this article the path planner for a humanoid robot is presented. The short description of an universal control framework and the Motion Ge‐ neration System is also presented. Described path plan‐ ner utilizes a limited number of motions called the Mo‐ tion Primitives. They are generated by Motion Generation System. Four different algorithms, namely the: Informed RRT, Informed RRT with random bias, and RRT with A* like heuristics were tested. For the last one the version with biased random function was also considered. All menti‐ oned algorithms were evaluated considering three diffe‐ rent scenarios. Obtained results are described and discus‐ sed.
Twórcy
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw, 00– 665, https://ztmir.meil.pw.edu.pl/web/Pracownicy/inz.‑ Maksymilian‑Szumowski
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Nowowiejska 24, Warsaw, 00– 665, www: https://ztmir.meil.pw.edu.pl/web/Pracownicy/prof.‑ Teresa‑Zielinska
Bibliografia
  • [1] J. Baltes, J. Bagot, S. Sadeghnejad, J. Anderson, and C.‑H. Hsu, “Full‑body motion planning for humanoid robots using rapidly exploring random trees”, KI ‑ Künstliche Intelligenz, vol. 30, no. 3‑4, 2016, 245–255, 10.1007/s13218‑016‑0450‑z.
  • [2] J. L. Blanco, M. Bellone, and A. Gimenez‑Fernandez, “TP‑space RRT – kinematic path planning of non‑holonomic any‑shape vehicles”, International Journal of Advanced Robotic Systems, vol. 12, no. 5, 2015, 55, 10.5772/60463.
  • [3] W. Chi and M. Q.‑H. Meng, “Risk‑RRT∗: A robot motion planning algorithm for the human robot coexisting environment”. In: 2017 18th International Conference on Advanced Robotics (ICAR), 2017, 10.1109/icar.2017.8023670.
  • [4] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot,“Informed RRT∗: Optimal sampling‑based path planning focused via direct sampling of an admissible ellipsoidal heuristic”. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2014, 10.1109/iros.2014.6942976.
  • [5] S. Garrido‑Jurado, R. Muñ oz‑Salinas, F. Madrid-Cuevas, and M. Marı́n‑Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion”, Pattern Recognition, vol. 47, no. 6, 2014, 2280–2292,10.1016/j.patcog.2014.01.005.
  • [6] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss, G. Pratt, and C. Orlowski, “The DARPA robotics challenge finals: Results and perspectives”, Journal of Field Robotics, vol. 34, no. 2, 2016, 229–240, 10.1002/rob.21683.
  • [7] S. M. LaValle, “Rapidly‑exploring random trees : a new tool for path planning”. In: Mathematics, 1998.
  • [8] J. Li, S. Liu, B. Zhang, and X. Zhao, “RRT‑a∗ motion planning algorithm for non‑holonomic mobile robot”. In: 2014 Proceedings of the SICE Annual Conference (SICE), 2014, 10.1109/sice.2014.6935304.
  • [9] T. Nishi and T. Sugihara, “Motion planning of a humanoid robot in a complex environment using RRT and spatiotemporal post‑processing techniques”, International Journal of Humanoid Robotics, vol. 11, no. 02, 2014, 1441003, 10.1142/s0219843614410035.
  • [10] M. Paetzel and L. Hofer, “The RoboCup humanoid league on the road to 2050 [competitions]”, IEEE Robotics & Automation Magazine, vol. 26, no. 4, 2019, 14–16, 10.1109/mra.2019.2945738.
  • [11] Z. Qiu, A. Escande, A. Micaelli, and T. Robert, “A hierarchical framework for realizing dynamically‑stable motions of humanoid robot in obstacle‑cluttered environments”. In: 2012 12th IEEE‑RAS International Conference on Humanoid Robots (Humanoids 2012), 2012, 10.1109/humanoids.2012.6651622.
  • [12] E. Szadeczky‑Kardoss and B. Kiss, “Extension of the rapidly exploring random tree algorithm with key confiigurations for nonholonomic motion planning”. In: 2006 IEEE International Conference on Mechatronics, 2006, 10.1109/icmech.2006.252554.
  • [13] M. Szumowski and T. Zielinska, “Preview control applied for humanoid robot motion generation”, Archives of Control Sciences, 2019, 10.24425/ACS.2019.127526.
  • [14] M. Szumowski, M. S. Żurawska, and T. Zielińska, “Simplified method for humanoid robot gait generation”. In: Advances in Mechanism and Machine Science, 2019, 2269–2278, 10.1007/978‑3‑030‑20131‑9_224.
  • [15] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided bidirectionalized RRT∗: for fast optimal path planning in cluttered environments”, Robotics and Autonomous Systems, vol. 108, 2018, 13–27, 10.1016/j.robot.2018.06.013.
  • [16] M. Vukobratović and B. Borovac, “ZERO‑MOMENT POINT — THIRTY FIVE YEARS OF ITS LIFE”, International Journal of Humanoid Robotics, vol. 01, no. 01, 2004, 157–173, 10.1142/s0219843604000083.
  • [17] K. Yang, S. Moon, S. Yoo, J. Kang, N. L. Doh, H. B. Kim, and S. Joo, “Spline‑based RRT path planner for non‑holonomic robots”, Journal of Intelligent & Robotic Systems, vol. 73, no. 1‑4, 2013, 763–782, 10.1007/s10846‑013‑9963‑y.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a87037-603b-4210-885a-a089a3a7c28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.