PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical assessment of a hip joint stem model made of a PEEK/carbon fibre composite under compression loading

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the work was to manufacture a composite stem model consisting of carbon fibres (CF) and polyether ether ketone (PEEK) and to perform the surface strain and stress distributions in the stem-femoral bone model under compression loading. Methods: Composite stems differing in elasticity were prepared. Three types of composite stems having different arrangements of carbon fibre reinforcements (carbon fibre roving, carbon fibre sleeves and their combinations) in the polymer matrix were made. The stems were cementless fixed in the femoral bone model channel or with the use of the polymer bone cement (PMMA). Mechanical behaviour of composite stems under compression loading was compared with a metallic stem by strain gauge measurements at different parts of stem/bone model systems. Results: The values of stresses in the proximal part of the bone model for cemented and cementless fixations of the composite stem in the femoral bone channel were higher than those noted for the metallic stem. The increase in proximal bone stress was almost similar for both types of fixation of composite stems, i.e., cemented and cementless fixed stems. Conclusions: The optimal range of mechanical stiffness, strengths and work up to fracture was obtained for composite stem made of carbon fibre sleeves and carbon fibres in the form of roving. Depending on the elasticity of the composite stem model, an increase in the stress in the proximal part of femoral bone model of up to 40% was achieved in comparison with the metallic stem.
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
  • AGH – University of Science and Technology, Faculty of Materials Science and Ceramics, Kraków, Poland
Bibliografia
  • [1] ARO H., EEROLA E., ANO A.J., Osteolysis after Rigid Fixation. The Possible Role of Periosteal Neutral Mechanoreceptors in Bone Remodeling, Clin. Orthop. Rel. Res., 1982, Vol. 166, 292.
  • [2] BAIDYA K.P., RAMAKRISHNA S., RAHMAN M., RITCHIE A., Quantitative radiographic analysis of fiber reinforced polymer composites, J. Biomater. Appl., 2001, Vol. 3(15), 279–289.
  • [3] BORRUTO A., A new material for hip prosthesis without considerable debris release, Med. Eng. Phys., 2010, Vol. 32(8), 908–913.
  • [4] DEVINA D.M., HALN J., RICHARDS R.G., GRUNER H., WILEDING R., PEARCE S.G., Coating carbon fiber-reinforced PEEK implants with titanium to improve bone apposition, J. Biomed. Mater. Res. B. 2013, Vol. 101B(4), 591–598.
  • [5] DWORAK M., BLOCH M., BLAZEWICZ S., Chemical and mechanical study of PEEK/carbon fibre composite, Engineering of Biomaterials, Polish J., 2007, Vol. 10(69–72), 121–124.
  • [6] DUBOK V.A., Bioceramics – Yesterday, Today, Tomorrow, POWDER METALL MET C+, 2000, Vol. 7–8, 381–394.
  • [7] GROSS S., ABEL E.W., A finite element analysis of hollow stemmed hip prosteses as means of reducing stress shielding of the femur, J. Biomech., 2001, Vol. 34, 995–1003.
  • [8] HENCH L.L., Bioceramics: from concept to clinics, Am. Ceram. Soc. Bull., 1995, Vol. 72 (4), 93–98.
  • [9] JOSHI M.G., ADVANI S.G., MILLER F., SANTARE M.H., Analysis of a femoral hip prosthesis designed to reduce stress shielding, J. Biomech., 2000, Vol. 33(12), 1655–1662.
  • [10] KURTZ S.M., DEVINE J.N., Peek biomaterials in trauma, orthopedic, and spinal implants, Biomaterials, 2007, Vol. 28(32), 4845–69.
  • [11] LONG M., RACK H.J., Titanium alloys in total joint replacement – a materials science perspective, Biomaterials, 1998, Vol. 19, 1621–1639.
  • [12] MIGACZ K., CHLOPEK J., MORAWSKA-CHOCHOL A., AMBROZIAK M., Gradient composite materials for artificial intervertebral discs, Acta Bioeng. Biomech., 2014, Vol. 16(3), 4–12.
  • [13] MIKOCIAK D., BLAZEWICZ S., MICHALOWSKI J., Biological and mechanical properties of nanohydroxyapatite-containing carbon/carbon composites, Int. J. Appl. Ceram. Tec., 2012, Vol. 9, 468–478.
  • [14] PIELICHOWSKA K., BLAZEWICZ S., Bioactive polymer/hydroxyapatite (nano)composites for bone tissue regeneration; Biopolymers: lignin, proteins, bioactive nanocomposites, A. Akihiro (ed.), Springer-Verlag, (in: Advances in Polymer Science A. Abe (ed.)), 2010, Vol. 232, 97–207.
  • [15] RATNER B.D., HOFFMAN A.S., SCHOEN F.J., LEMONS J.E. (eds.), Biomaterials Science: an introduction to materials in medicine, 2nd ed. San Diego, CA: Academic Press, 2004.
  • [16] RECLARU L., LERF R., ESCHLER P.Y., MEYER J.M., Corrosion Behavior of a Welded Stainless Steel Orthopedic Implant, Biomaterials, 2001, Vol. 22, 269–279.
  • [17] RUI M., TINGING T., Current strategies to improve the bioactivity of PEEK, Int. J. Mol. Sci., 2014, Vol. 15, 5426–5445.
  • [18] SARSILMAZ F., ORHAN N., UNSALDIE E., DURMUS A.S., COLAKOGLU A., A polyethylene-high proportion hydroxyapatite implant and its investigation in vivo, Acta Bioeng. Biomech., 2007, Vol. 9(2), 9–16.
  • [19] SCHOLES S.C., UNSWORTH A., The wear properties of CFRPEEK-Optima articulating against ceramics on a multidirectional pin-on-plate machine, Proc. Inst. Mech. Eng. [H], 2007, Vol. 221(3), 281–289.
  • [20] SCOTCHFORD C.A., GARLE M.J., BATCHELOR J., BRADLEY J., GRANT D.M., Use of a novel carbon fibre composite material for the femoral stem component of a THR system: in vitro biological assessment, Biomaterials, 2003, Vol. 24(26), 4871–4879.
  • [21] TOTH J.M., WANG M., ESTES B.T., SCIFERT J.L., SEIM H.B., TURNER A.S., Polyetheretherketone as a biomaterial for spinal applications, Biomaterials, 2006, Vol. 27(3), 324–334.
  • [22] VEERABAGU S., FUJIHARA K., DASARI G.R., RAMAKRISHNA S., Strain Distribution Analysis of Braided Composite Bone Plates, Comp. Sci. and Tech., 2003, Vol. 62, 427–435.
  • [23] WAN Z., DORR L.D., WOODSOME T., RANAWAT A., SONG M., Effect of stem stiffness and bone stiffness on bone remodeling in cemented total hip replacement, J. Arthroplasty, 1999, Vol. 14(2), 149–158.
  • [24] WILLIAMS D., Polyether ether ketone for long-term implantable devices, Med. Device Technol., 2008, Vol. 19, 10–11.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a4f665-bdc0-4d55-afaf-120ed1abbbeb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.