Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper concerns a viscoelastic Kirchhoff-type equation with the dispersive term, internal damping, and logarithmic nonlinearity. We prove the local existence of a weak solution via a modified lemma of contraction of the Banach fixed-point theorem. Although the uniqueness of a weak solution is still an open problem, we proved uniqueness locally for specifically suitable exponents. Furthermore, we established a result for local existence without guaranteeing uniqueness, stating a contraction lemma.
Czasopismo
Rocznik
Tom
Strony
19--47
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
- Federal University of Pará, Faculty of Exact Sciences and Technology, R. Manoel de Abreu, Abaetetuba, 68440–000, Pará, Brazil
autor
- Federal University of Bahia, Department of Mathematics, Av. Milton Santos, Salvador, 40170–110, Bahia, Brazil
autor
- Federal Fluminense University, Department of Exact Sciences, Avenida dos Trabalhadores, Volta Redonda, 27255–125, Rio de Janeiro, Brazil
autor
- Federal University of Pará, Institute of Exact and Natural Sciences, R. Augusto Corrêa, Belém, 66075–110, Pará, Brazil
autor
- Jahrom University, Department of Mathematics, GJPJ+8PW, Jahrom, 74137–66171, Fars Province, Iran
Bibliografia
- [1] J. Barrow, P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576–5587.
- [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, London, 2010.
- [3] M.M. Cavalcanti, V.N. Domingos Cavalcanti, I. Lasiecka, C.M. Webler, Intrinsic Decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density, Adv. Nonlinear Anal. 6 (2017), 121–145.
- [4] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Inc, New York, 1955.
- [5] Y. Chen, R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal. 92 (2020), 111664.
- [6] M. Conti, E.M. Marchini, V. Pata, A well posedness result for nonlinear viscoelastic equations with memory, Nonlinear Anal. Theory Methods Appl. 94 (2014), 206–216.
- [7] S.M.S. Cordeiro, D.C. Pereira, C.A.C. Baldez, C.A.R. Cunha, Global existence and asymptotic behavior for a Timoshenko system with internal damping and logarithmic source terms, Arab. J. Math. 12 (2022), 105–118.
- [8] S.M.S. Cordeiro, D.C. Pereira, J. Ferreira, C.A. Raposo, Global solutions and exponential decay to a Klein–Gordon equation of Kirchhoff-Carrier type with strong damping and nonlinear logarithmic source term, Partial Differ. Equ. Appl. Math. 3 (2021), 100018.
- [9] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal. 37 (1970), 297–308.
- [10] K. Enqvist, J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998), 309–321.
- [11] J. Ferreira, M. Shahrouzi, S. Cordeiro, D. Rocha, Blow up of solution for a nonlinear viscoelastic problem with internal damping and logarithmic source term, J. Math. Mech. Comput. Sci. [S.l.], 116 (2022), 15–24.
- [12] J. Han, R. Xu, C. Yang, Improved growth estimate of infinite time blowup solution for a semilinear hyperbolic equation with logarithmic nonlinearity, Appl. Math. Lett. 143 (2023), 108670.
- [13] M.-T. Lacroix-Sonrier, Distribution Espaces de Sobolev Aplications, Ellipses, 1998.
- [14] W. Lian, Md Salik Ahmed, R. Xu, Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity, Opuscula Math. 40 (2020), 111–130.
- [15] W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal. 9 (2020), 613–632.
- [16] J.L. Lions, Quelques méthodes de resolution des problèmes aux limites non lineaires, Dunod, Paris, 1968.
- [17] J.L. Lions, On some questions in boundary value problems of mathematical physics, IM-UFRJ, Brazil, 1978.
- [18] W. Liu, G. Li, L. Hong, General decay and blow-up of solutions for a system of viscoelastic equations of Kirchhoff type with strong damping, J. Funct. Spaces 2014 (2014), Article ID 284809.
- [19] Y. Liu, B. Moon, V.D. Rădulescu, R. Xu, C. Yang, Qualitative properties of solution to a viscoelastic Kirchhoff-like plate equation, Math. Phys. 64 (2023), 1–56.
- [20] A.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York, 1944.
- [21] S.A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci. 30 (2007), 665–680.
- [22] N. Mezoua, S.M. Boulaaras, A. Allahem, Global existence of solutions for the viscoelastic Kirchhoff equation with logarithmic source terms, Complexity 2020 (2020), Article ID 7105387.
- [23] K. Nishihara, On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math. 7 (1984), 437–459.
- [24] N. Pan, P. Pucci, R. Xu, B. Zhang, Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms, J. Evol. Equ. 19 (2019), 615–643.
- [25] S.I. Pohozaev, On a class of quasilinear hyperbolic equations, Mat. USSR Sbornik 25 (1975), 145–148.
- [26] X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal. 188 (2019), 475–499.
- [27] X. Wang, R. Xu, Global existence and finite time blowup for a nonlocal semilinear pseudo-parabolic equation, Adv. Nonlinear Anal. 10 (2021), 261–288.
- [28] A.J. Weir, Lebesque Integration and Measure, Reader in Mathematics and Education, University of Sussex, 1973.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a49db9-a459-4708-ab86-6c7f320cd4d6