PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fixed-latency System for High-speed Serial Transmission Between FPGA Devices with Forward Error Correction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the design of a compact protocol for fixed-latency, high-speed, reliable, serial transmission between simple field-programmable gate arrays (FPGA) devices. Implementation of the project aims to delineate word boundaries, provide randomness to the electromagnetic interference (EMI) generated by the electrical transitions, allow for clock recovery and maintain direct current (DC) balance. An orthogonal concatenated coding scheme is used for correcting transmission errors using modified Bose–Chaudhuri–Hocquenghem (BCH) code capable of correcting all single bit errors and most of the double-adjacent errors. As a result all burst errors of a length up to 31 bits, and some of the longer group errors, are corrected within 256 bits long packet. The efficiency of the proposed solution equals 46.48%, as 119 out of 256 bits are fully available to the user. The design has been implemented and tested on Xilinx Kintex UltraScale+ KCU116 Evaluation Kit with a data rate of 28.2 Gbps. Sample latency analysis has also been performed so that user could easily carry out calculations for different transmission speed. The main advancement of the work is the use of modified BCH(15, 11) code that leads to high error correction capabilities for burst errors and user friendly packet length.
Rocznik
Strony
545--553
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
  • Warsaw University of Technology, the Institute of Electronic Systems, Warsaw, Poland
  • Warsaw University of Technology, the Institute of Electronic Systems, Warsaw, Poland
Bibliografia
  • [1] J. Postel, “Transmission Control Protocol,” Tech. Rep., 1981. [Online]. Available: https://www.rfc-editor.org/info/rfc0793
  • [2] G. Fairhurst and L. Wood, “Advice to link designers on link Automatic Repeat reQuest (ARQ),” RFC Editor, Tech. Rep. RFC3366, Aug. 2002. [Online]. Available: https://www.rfc-editor.org/info/rfc3366
  • [3] C. Systems and C. Systems, “Interlaken Protocol Definition,” Tech. Rep., 2008.
  • [4] G. specifications group, “GBTX Manual,” Tech. Rep., Oct. 2016.
  • [5] S. Mandal, J. Saini, W. M. Zabołotny, S. Sau, A. Chakrabarti, and S. Chattopadhyay, “An FPGA-Based High-Speed Error Resilient Data Aggregation and Control for High Energy Physics Experiment,” IEEE Transactions on Nuclear Science, vol. 64, no. 3, pp. 933–944, Mar. 2017.
  • [6] R. Giordano, V. Izzo, S. Perrella, and A. Aloisio, “A JESD204b-Compliant Architecture for Remote and Deterministic-Latency Operation,” IEEE Transactions on Nuclear Science, vol. 64, no. 6, pp. 1225–1231, Jun. 2017.
  • [7] D. Gaisbauer, Y. Bai, S. Huber, I. Konorov, D. Levit, S. Paul, and D. Steffen, “Unified Communication Framework,” IEEE Transactions on Nuclear Science, vol. 64, no. 10, pp. 2761–2764, Oct. 2017.
  • [8] E. Kadric, N. Manjikian, and Z. Zilic, “An FPGA implementation for a high-speed optical link with a PCIe interface,” in 2012 IEEE International SOC Conference, Sep. 2012, pp. 83–87.
  • [9] B. Raahemi, “Error correction on 64/66 bit encoded links,” in Canadian Conference on Electrical and Computer Engineering, 2005., May 2005, pp. 412–416.
  • [10] A. Wu, X. Jin, X. Du, and S. Guo, “A flexible FPGA-to-FPGA communication system,” in 2017 19th International Conference on Advanced Communication Technology (ICACT), Feb. 2017, pp. 836–843.
  • [11] J. Zhang, Q. Lin, Y. Zhang, and Z. Chen, “Design and Implementation of High-Speed Data Transmission Scheme Between FPGA Boards Based on Virtex -7 Series,” in 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), May 2018, pp. 444–448.
  • [12] R. Sanchez Correa and J. P. David, “Ultra-low latency communication channels for FPGA-based HPC cluster,” Integration, vol. 63, pp. 41–55, Sep. 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167926017303966
  • [13] Xilinx, “Source-Synchronous Serialization and Deserialization (up to 1050 Mb/s),” Tech. Rep., 2013.
  • [14] Xilinx, “LVDS Source Synchronous 7:1 Serialization and Deserialization Using Clock Multiplication,” Tech. Rep., 2018.
  • [15] I. Corporation, “Intel® Stratix® 10 High-Speed LVDS I/O User Guide,” Tech. Rep., 2019.
  • [16] Xilinx, “Native High-Speed I/O Interfaces,” Tech. Rep., 2017. [Online]. Available: https://www.xilinx.com/support/documentation/application_notes/xapp1274-native-high-speed-io-interfaces.pdf
  • [17] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple Modular redundancy (STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, no. 5, pp. 2957–2969, Oct. 2004.
  • [18] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A Comparison of TMR With Alternative Fault-Tolerant Design Techniques for FPGAs,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2065–2072, Dec. 2007.
  • [19] W. M. Zabolotny, I. M. Kudla, K. T. Pozniak, K. Bunkowski, K. Kierzkowski, G. Wrochna, and J. Krolikowski, “Radiation tolerant design of RLBCS system for RPC detector in LHC experiment,” in Photonics Applications in Industry and Research IV, vol. 5948. International Society for Optics and Photonics, Oct. 2005, p. 59481E. [Online]. Available: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5948/59481E/Radiation-tolerant-design-of-RLBCS-system-for-RPC-detector-in/10.1117/12.622864.short
  • [20] I. APT Technologies, D. C. Corporation, I. Corporation, I. Corporation, M. Corporation, and S. Technology, “Serial ATA: High Speed Serialized AT Attachment,” Aug. 2001.
  • [21] S. Minami, J. Hoffmann, N. Kurz, and W. Ott, “Design and implementation of a data transfer protocol via optical fiber – IEEE Conference Publication.” [Online]. Available: https://ieeexplore.ieee.org/document/5750447/
  • [22] S. Cha and H. Yoon, “Single-Error-Correction and Double-Adjacent-Error-Correction Code for Simultaneous Testing of Data Bit and Check Bit Arrays in Memories,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 529–535, Mar. 2014.
  • [23] P. Reviriego, J. Martíınez, S. Pontarelli, and J. A. Maestro, “A Method to Design SEC-DED-DAEC Codes With Optimized Decoding,” IEEE Transactions on Device and Materials Reliability, vol. 14, no. 3, pp. 884–889, Sep. 2014.
  • [24] C. Badack, T. Kern, and M. Gössel, “Modified DEC BCH codes for parallel correction of 3-bit errors comprising a pair of adjacent errors,” in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS), Jul. 2014, pp. 116–121.
  • [25] X. She, N. Li, and D. W. Jensen, “SEU Tolerant Memory Using Error Correction Code,” IEEE Transactions on Nuclear Science, vol. 59, no. 1, pp. 205–210, Feb. 2012.
  • [26] P. Reviriego, S. Pontarelli, A. Evans, and J. A. Maestro, “A Class of SEC-DED-DAEC Codes Derived From Orthogonal Latin Square Codes,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 968–972, May 2015.
  • [27] N. Abramson, “A class of systematic codes for non-independent errors,” IRE Transactions on Information Theory, vol. 5, no. 4, pp. 150–157, Dec. 1959.
  • [28] K.-M. Cheung and L. Swanson, “A performance comparison between block interleaved and helically interleaved concatenated coding systems,” Aug. 1989. [Online]. Available: http://adsabs.harvard.edu/abs/1989tdar.nasa...95C
  • [29] S. Cypress, “AN1047 - Understanding Bit-Error-Rate with HOTLinkR ,”Aug. 2017. [Online]. Available: http://www.cypress.com/documentation/application-notes/an1047-understanding-bit-error-rate-hotlinkr
  • [30] E. S. Chang and R. Taborek, “Recommendation of 10 ˆ-13 Bit Error Rate for 10 Gigabit Ethernet,” Tech. Rep., Jul. 1999.
  • [31] R. Dahlgren and B. Dahlgren, “NOISE IN FIBER OPTIC COMMUNICATION LINKS,” Tech. Rep.
  • [32] Xilinx, “UltraScale Architecture GTY Transceivers User Guide (UG578),” Tech. Rep., 2017.
  • [33] Xilinx, “AR# 69011: UltraScale+ GTY Transceiver: TX and RX Latency Values.” [Online]. Available: https://www.xilinx.com/support/answers/69011.html
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a3999b-0f4d-4f24-8387-10ca5647f5b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.