PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Recent Developments in the Application of Ultrasonication in Pre-Treatment of Municipal Sewage Sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the experience in the field of using ultrasonication as a pre-treatment method of SS (sewage sludge). On the basis of a review of the literature, the effect of pretreatment of sewage sludge by US (power ultrasound) with different parameters on SS quality parameters and energy effects of the process was presented. The status of commercial applications of US as a sewage sludge pretreatment method was also presented, using the example of wastewater treatment plants in Poland. It was shown that the effective management of SS is an important technological and environmental problem in many wastewater treatment plants. Therefore, new strategies for dealing with this by-product are constantly being sought. In large wastewater treatment plants, the dominant method of stabilizing SS is AD (anaerobic digestion). However, due to the characteristics of SS, it shows low efficiency. Among the numerous strategies, US is one of the new technologies that is finding several full-scale implementations. Its application allows for solubilization of organic matter, disruption of microbial cells, as well as SS floc description and enzyme release. A number of benefits can be obtained as a result of these developments, including increased methane production, improved reaction kinetics and removal of organic matter, as well as enhanced settability and dewatering of SS, thus contributing to savings in wastewater treatment plants.
Rocznik
Strony
223--234
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Fundamentals of Technology , Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Municipal Water Supply and Sewage Company Ltd. in Lublin, Al. Piłsudskiego 15, 20-407 Lublin, Poland
Bibliografia
  • 1. Abelleira-Pereira J.M., Pérez-Elvira S.I., Sánchez-Oneto J., de la Cruz R., Portela J.R., Nebot E. 2015. Enhancement of methane production in mesophilic anaerobic digestion of secondary sewage sludge by advanced thermal hydrolysis pretreatment. Water Research, 71, 330–340. DOI: 10.1016/j.watres.2014.12.027.
  • 2. Appels L., Baeyens J., Degrève J., Dewil R. 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781. DOI: 10.1016/j.pecs.2008.06.002.
  • 3. Atelge M.R., Atabani A.E., Banu J.R., Krisa D., Kaya M., Eskicioglu C., Kumar G., Lee C., Yildiz Y. Ş., Unalan S., Mohanasundaram R., Duman F. 2020. A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270, 117494. DOI: https://doi.org/10.1016/j.fuel.2020.117494.
  • 4. Azarmanesh R., Zarghami Qaretapeh M., Hasani Zonoozi M., Ghiasinejad H., Zhang Y. 2023. Anaerobic co-digestion of sewage sludge with other organic wastes: A comprehensive review focusing on selection criteria, operational conditions, and microbiology. Chemical Engineering Journal Advances, 14, 100453. DOI: 10.1016/j.ceja.2023.100453.
  • 5. Azevedo A., Lapa N., Moldão M., Duarte E. 2023. Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review. Energy Nexus 10. DOI: 10.1016/j.nexus.2023.100202.
  • 6. Baeyens J., Hosten L., Van Vaerenbergh E. Afvalwaterzuivering (Wastewater treatment). 2nd ed. The Netherlands: Kluwer Academic Publishers, 1997. [in Dutch]
  • 7. Bagheri M., Bauer T., Burgman L.E., Wetterlund E. 2023. Fifty years of sewage sludge management research: Mapping researchers’ motivations and concerns. Journal of Environmental Management, 325, 116412. DOI: 10.1016/j.jenvman.2022.116412.
  • 8. Balasundaram G., Vidyarthi P.K., Gahlot P., Arora P., Kumar V., Kumar M., Kazmi A.A., Tyagi V.K. 2022. Energy feasibility and life cycle assessment of sludge pretreatment methods for advanced anaerobic digestion. Bioresource Technology, 357, 127345. DOI: 10.1016/j.biortech.2022.127345.
  • 9. Bieganowski A., Łagód G., Ryzak M., Montusiewicz A., Chomczyńska M., Sochan A. 2012. Measurement of activated sludge particle diameters using laser diffraction method. Ecological Chemistry and Engineering S, 19, 597–608. DOI: 10.2478/v10216-011-0042-7.
  • 10. Braguglia C.M., Gianico A., Mininni G. 2011. Laboratory-scale ultrasound pre-treated digestion of sludge: Heat and energy balance. Bioresource Technology, 102, 7567–7573. DOI: 10.1016/j.biortech.2011.05.025.
  • 11. Chang T.C., You S. J., Damodar R.A., Chen Y.Y. 2011. Ultrasound pre-treatment step for performance enhancement in an aerobic sludge digestion process. Journal of the Taiwan Institute of Chemical Engineers, 42, 801–808. DOI: 10.1016/j.jtice.2011.01.003.
  • 12. Chen Z., Hou Y., Liu M., Zhang G., Zhang K., Zhang D., Yang L., Kong Y., Du X. 2022. Thermodynamic and economic analyses of sewage sludge resource utilization systems integrating Drying, Incineration, and power generation processes. Applied Energy, 327, 120093. DOI: 10.1016/j.apenergy.2022.120093.
  • 13. Chojnacka K., Skrzypczak D., Szopa D., Izydorczyk G., Moustakas K., Witek-Krowiak A. 2023. Management of biological sewage sludge: Fertilizer nitrogen recovery as the solution to fertilizer crisis. Journal of Environmental Management, 326, 116602. DOI: 10.1016/j.jenvman.2022.116602.
  • 14. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Strategy for Financing the Transition to a Sustainable Economy COM/2021/390.
  • 15. Ćwiertniewicz-Wojciechowska M., Cema G., Ziembińska-Buczyńska A. 2023. Sewage sludge pretreatment: current status and future prospects. Environmental Science and Pollution Research, 30, 88313–88330. DOI: 10.1007/s11356-023-28613-7.
  • 16. Dauknys R., Mažeikienė A., Paliulis D. 2020. Effect of ultrasound and high voltage disintegration on sludge digestion process. Journal of Environmental Management, 270. DOI: 10.1016/j.jenvman.2020.110833.
  • 17. Delmas H., Le N.T., Barthe L., Julcour-Lebigue C. 2015. Optimization of hydrostatic pressure at varied sonication conditions - Power density, intensity, very low frequency - For isothermal ultrasonic sludge treatment. Ultrasonics Sonochemistry, 25, 51–59. DOI: 10.1016/j.ultsonch.2014.08.011.
  • 18. Di Giacomo G., Romano P. 2022. Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification. Energies 15. DOI: 10.3390/en15155633.
  • 19. Drewnowski J., Makinia J. 2013. Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Science and Technology, 67, 2067–2074. DOI: 10.2166/wst.2013.092.
  • 20. Drewnowski J., Szeląg B., Xie L., Lu X., Ganesapillai M., Deb C. K., Szulżyk-Cieplak J., Łagód G. 2020. The Influence of COD Fraction Forms and Molecules Size on Hydrolysis Process Developed by Comparative OUR Studies in Activated Sludge Modelling. Molecules 25. DOI: 10.3390/molecules25040929.
  • 21. Gao N., Kamran K., Quan C., Williams P.T. 2020. Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. DOI: 10.1016/j.pecs.2020.100843.
  • 22. Gebreeyessus G.D., Jenicek P. 2016. Thermophilic versus mesophilic anaerobic digestion of sewage sludge: A comparative review. Bioengineering, 3, 1–14. DOI: 10.3390/bioengineering3020015.
  • 23. Gil A., Toledo M., Siles J.A., Martín M.A. 2018. Multivariate analysis and biodegradability test to evaluate different organic wastes for biological treatments: Anaerobic co-digestion and co-composting. Waste Management, 78, 819–828. DOI: 10.1016/j.wasman.2018.06.052.
  • 24. Godvin Sharmila V., Kumar G., Sivashanmugham P., Piechota G., Park J.H., Adish Kumar S., Rajesh Banu J. 2022. Phase separated pretreatment strategies for enhanced waste activated sludge disintegration in anaerobic digestion: An outlook and recent trends. Bioresource Technology, 363, 127985. DOI: 10.1016/j.biortech.2022.127985.
  • 25. Gogate P.R. 2002. Cavitation: An auxiliary technique in wastewater treatment schemes. Advances in Environmental Research, 6, 335–358. DOI: 10.1016/S1093-0191(01)00067-3.
  • 26. Gopinath A., Divyapriya G., Srivastava V., Laiju A.R., Nidheesh P.V., Kumar M.S. 2021. Conversion of sewage sludge into biochar: A potential resource in water and wastewater treatment. Environmental Research, 194, 110656. DOI: 10.1016/j.envres.2020.110656.
  • 27. Grobelak A., Czerwińska K., Murtaś A. 2019. 7 - General considerations on sludge disposal, industrial and municipal sludge. In: Prasad MNV, de Campos Favas PJ, Vithanage M, Mohan SVBT-I and MS eds. Butterworth-Heinemann, 135–153. DOI: 10.1016/B978-0-12-815907-1.00007-6.
  • 28. Grübel K., Machnicka A. 2020. The use of hybrid disintegration of activated sludge to improve anaerobic stabilization process. Ecological Engineering, 21, 1–8.
  • 29. GUS, Local Data Bank, https://bdl.stat.gov.pl/ (20.08.2023).
  • 30. Isa M.H., Wong L.-P., Bashir M.J.K., Shafiq N., Kutty S.R.M., Farooqi I.H., Lee H.C. 2020. Improved anaerobic digestion of palm oil mill effluent and biogas production by ultrasonication pretreatment. Science of The Total Environment, 722, 137833. DOI: 10.1016/j.scitotenv.2020.137833.
  • 31. Jaromin-Gleń K., Kłapeć T., Łagód G., Karamon J., Malicki J., Skowrońska A., Bieganowski A. 2017. Division of methods for counting helminths’ eggs and the problem of efficiency of these methods. Annals of Agricultural and Environmental Medicine, 24, 1–7. DOI: 10.5604/12321966.1233891.
  • 32. Jiang C., Chen Z., Lu B., Li Z., Zhang S., Liu Y., Luo G. 2022. Hydrothermal pretreatment reduced microplastics in sewage sludge as revealed by the combined micro-Fourier transform infrared (FTIR) and Raman imaging analysis. Chemical Engineering Journal, 450, 138163. DOI: 10.1016/j.cej.2022.138163.
  • 33. Karki R., Chuenchart W., Surendra K. C., Shrestha S., Raskin L., Sung S., Hashimoto A., Kumar Khanal S. 2021. Anaerobic co-digestion: Current status and perspectives. Bioresource Technology, 330, 125001. DOI: 10.1016/j.biortech.2021.125001.
  • 34. Kazimierowicz J., Zieliński M., Bartkowska I., Dębowski M. 2022. Effect of Acid Whey Pretreatment Using Ultrasonic Disintegration on the Removal of Organic Compounds and Anaerobic Digestion Efficiency. International Journal of Environmental Research and Public Health, 19. DOI: 10.3390/ijerph191811362.
  • 35. Khanh Nguyen V., Kumar Chaudhary D., Hari Dahal R., Hoang Trinh N., Kim J., Chang S.W., Hong Y., Duc La D., Nguyen X.C., Hao Ngo H., Chung W.J., Nguyen D.D. 2021. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel, 285, 119105. DOI: 10.1016/j.fuel.2020.119105.
  • 36. Kosiński P., Kask B., Franus M., Piłat-Rożek M., Szulżyk-Cieplak J., Łagód G. 2023. The Possibility of Using Sewage Sludge Pellets as Thermal Insulation. Advances in Science and Technology Research Journal, 17, 161–172. DOI: 10.12913/22998624/159724.
  • 37. Le N. T., Julcour-Lebigue C., Barthe L., Delmas H. 2016. Optimisation of sludge pretreatment by low frequency sonication under pressure. Journal of Environmental Management, 165, 206–212. DOI: 10.1016/j.jenvman.2015.09.015.
  • 38. Lebiocka M., Piotrowicz A. 2012. Co-digestion of sewage sludge and organic fraction of municipal solid waste. A comparison between laboratory and technical scales. Environment Protection Engineering, 38, 157–162. DOI: 10.5277/EPE120413.
  • 39. Lippert T., Bandelin J., Musch A., Drewes J.E., Koch K. 2018. Energy-positive sewage sludge pretreatment with a novel ultrasonic flatbed reactor at low energy input. Bioresource Technology, 264, 298–305. DOI: 10.1016/j.biortech.2018.05.073.
  • 40. Lippert T., Bandelin J., Schlederer F., Drewes J.E., Koch K. 2020. Effects of ultrasonic reactor design on sewage sludge disintegration. Ultrasonics Sonochemistry, 68, 105223. DOI: 10.1016/j.ultsonch.2020.105223.
  • 41. Lippert T., Bandelin J., Vogl D., Alipour Tesieh Z., Wild T., Drewes J.E., Koch K. 2021. Full-Scale Assessment of Ultrasonic Sewage Sludge Pretreatment Using a Novel Double-Tube Reactor. ACS ES&T Engineering, 1, 298–309. DOI: 10.1021/acsestengg.0c00138.
  • 42. Liu Y., Xie X., Wang M. 2023. Energy structure and carbon emission: Analysis against the background of the current energy crisis in the EU. Energy, 280, 128129. DOI: 10.1016/j.energy.2023.128129.
  • 43. Lizama A.C., Figueiras C.C., Herrera R.R., Pedreguera A.Z., Ruiz Espinoza J.E. 2017. Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge. International Biodeterioration and Biodegradation, 123, 1–9. DOI: 10.1016/j.ibiod.2017.05.020.
  • 44. Lizama A.C., Figueiras C.C., Pedreguera A.Z., Ruiz Espinoza J.E. 2018. Effect of ultrasonic pretreatment on the semicontinuous anaerobic digestion of waste activated sludge with increasing loading rates. International Biodeterioration and Biodegradation, 130, 32–39. DOI: 10.1016/j.ibiod.2018.03.013.
  • 45. Machnicka A., Grübel K. 2023. The effect of pretreatment and anaerobic digestion for pathogens reduction in agricultural utilization of sewage sludge. Environmental Science and Pollution Research, 30, 13801–13810. DOI: 10.1007/s11356-022-23164-9.
  • 46. Machnicka A., Grübel K., Wacławek S., Sikora K. 2019. Waste-activated sludge disruption by dry ice: bench scale study and evaluation of heat phase transformations. Environmental Science and Pollution Research, 26, 26488–26499. DOI: 10.1007/s11356-019-05889-2.
  • 47. Martín M.Á., González I., Serrano A., Siles J.Á. 2015. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. Journal of Environmental Management, 147, 330–337. DOI: 10.1016/j.jenvman.2014.09.022.
  • 48. Masłoń A., Czarnota J., Szaja A., Szulżyk-Cieplak J., and. Łagód G.. 2020. The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland. Energies, 13, 6056.
  • 49. Mata-Alvarez J., Dosta J., Romero-Güiza M.S., Fonoll X., Peces M., Astals S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. DOI: 10.1016/j.rser.2014.04.039.
  • 50. Mitraka G.C., Kontogiannopoulos K.N., Batsioula M., Banias G.F., Zouboulis A.I., Kougias P. G. 2022. A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge. Energies, 15. DOI: 10.3390/en15186536.
  • 51. Mohamed B.A., Li L.Y. 2023. Biofuel production by co-pyrolysis of sewage sludge and other materials: a review. Environmental Chemistry Letters, 21, 153–182. DOI: 10.1007/s10311-022-01496-9.
  • 52. Montusiewicz A., Lebiocka M., Rozej A., Zacharska E., Pawłowski L. 2010. Freezing/thawing effects on anaerobic digestion of mixed sewage sludge. Bioresource Technology, 101, 3466–3473. DOI: 10.1016/j.biortech.2009.12.125.
  • 53. Neumann P., Pesante S., Venegas M., Vidal G. 2016. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Reviews in Environmental Science and Biotechnology, 15, 173–211. DOI: 10.1007/s11157-016-9396-8.
  • 54. Piłat-Rożek M., Łazuka E., Majerek D., Szeląg B., Duda-Saternus S., Łagód G. 2023. Application of Machine Learning Methods for an Analysis of E-Nose Multidimensional Signals in Wastewater Treatment. Sensors, 23. DOI: 10.3390/s23010487.
  • 55. Pilli S., Bhunia P., Yan S., LeBlanc R.J., Tyagi R.D., Surampalli R.Y. 2011. Ultrasonic pretreatment of sludge: A review. Ultrasonics Sonochemistry, 18, 1–18. DOI: 10.1016/j.ultsonch.2010.02.014.
  • 56. Ravi Y.K., Zhang W., Liang Y. 2023. Effect of surfactant assisted ultrasonic pretreatment on production of volatile fatty acids from mixed food waste. Bioresource Technology, 368, 128340. DOI: 10.1016/j.biortech.2022.128340.
  • 57. Ronda A., Haro P., Gómez-Barea A. 2023. Sustainability assessment of alternative waste-to-energy technologies for the management of sewage sludge. Waste Management, 159, 52–62. DOI: 10.1016/j.wasman.2023.01.025.
  • 58. Rosiek K. 2020. Directions and challenges in the management of municipal sewage sludge in Poland in the context of the circular economy. Sustainability (Switzerland), 12. DOI: 10.3390/su12093686.
  • 59. Roy A., Luthra R., Datta S. 2022. 2 - Current prospects of biofuel production from sewage sludge. In: Shah MP, Rodriguez-Couto S, Shah N, Banerjee RBT-D in WWTR and P eds. Elsevier, 19–35. DOI: 10.1016/B978-0-323-85584-6.00002-9.
  • 60. Şenol H. 2021. Methane yield prediction of ultrasonic pretreated sewage sludge by means of an artificial neural network. Energy, 215. DOI: 10.1016/j.energy.2020.119173
  • 61. Shin S.R., Lee M.K., Im S., Kim D.H. 2019. Effect of seaweed addition on enhanced anaerobic digestion of food waste and sewage sludge. Environmental Engineering Research, 24, 449–455. DOI: 10.4491/EER.2018.275.
  • 62. Suchorab Z., Barnat-Hunek D., Franus M., Lagód G. 2016. Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Materials, 9. DOI: 10.3390/ma9050317.
  • 63. Szaja A., Aguilar A., Łagód G. 2015. Annual Set The Environment Protection Rocznik Ochrona Środowiska Estimation of Chemical Oxygen Demand Fractions of Municipal Wastewater by Respirometric Method – Case Study, 17.
  • 64. Szaja A., Montusiewicz A., Lebiocka M., Bis M. 2021. A combined anaerobic digestion system for energetic brewery spent grain application in co-digestion with a sewage sludge. Waste Management, 135, 448–456. DOI: 10.1016/j.wasman.2021.09.034.
  • 65. Szeląg B., Drewnowski J., Łagód G., Majerek D., Dacewicz E., Fatone F. 2020. Soft sensor application in identification of the activated sludge bulking considering the technological and economical aspects of smart systems functioning. Sensors (Switzerland), 20. DOI: 10.3390/s20071941.
  • 66. Tripathi P., Basu D., Pal P. 2023. Environmental impact of recycling sewage sludge into cementitious matrix: A review. Materials Today: Proceedings, 78, 179–188. DOI: 10.1016/j.matpr.2023.01.186.
  • 67. Trojanowska K., Myszograj S. 2017. Ultrasonic disintegration of sewage sludge in the GSD technology – operational experience Gaz, Woda i Technika Sanitarna, 1, 32–36. DOI: 10.15199/17.2017.3.7. [in Polish]
  • 68. Vethathirri R.S., Santillan E., Wuertz S. 2021. Microbial community-based protein production from wastewater for animal feed applications. Bioresource Technology, 341, 125723. DOI: 10.1016/j.biortech.2021.125723.
  • 69. Volschan Junior I., de Almeida R., Cammarota M.C. 2021. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. Journal of Water Process Engineering, 40, 101857. DOI: 10.1016/j.jwpe.2020.101857.
  • 70. Waclawek S., Grübel K., Silvestri D., Padil V.V.T., Waclawek M., Cerník M., Varma R.S. 2019. Disintegration of wastewater activated sludge (WAS) for improved biogas production. Energies, 12. DOI: 10.3390/en12010021.
  • 71. Wei L., Zhu F., Li Q., Xue C., Xia X., Yu H., Zhao Q., Jiang J., Bai S. 2020. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis. Environment International, 144, 106093. DOI: 10.1016/j.envint.2020.106093.
  • 72. Wenjing L., Chao P., Lama A., Xindi F., Rong Y., Dhar B. R. 2019. Effect of pre-treatments on biological methane potential of dewatered sewage sludge under dry anaerobic digestion. Ultrasonics Sonochemistry ,52, 224–231. DOI: 10.1016/j.ultsonch.2018.11.022.
  • 73. Werle S., Dudziak M. 2014a. Analysis of organic and inorganic contaminants in dried sewage sludge and by-products of dried sewage sludge gasification. Energies, 7, 462–476. DOI: 10.3390/en7010462.
  • 74. Werle S., Dudziak M. 2014b. Gaseous fuels production from dried sewage sludge via air gasification. Waste Management & Research, 32, 601–607. DOI: 10.1177/0734242X14536460.
  • 75. Werle S., Dudziak M. 2016. Evaluation of the possibility of the sewage sludge gasification gas use as a fuel. Ecological Chemistry and Engineering S, 23, 229–236. DOI: doi:10.1515/eces-2016-0015.
  • 76. Wodecka B., Drewnowski J., Białek A., Łazuka E., Szulżyk-Cieplak J. 2022. Prediction of Wastewater Quality at a Wastewater Treatment Plant Inlet Using a System Based on Machine Learning Methods. Processes, 10. DOI: 10.3390/pr10010085.
  • 77. Xiao B., Tang X., Yi H., Dong L., Han Y., Liu J. 2020. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment. Bioresource Technology, 304, 122979. DOI: 10.1016/j.biortech.2020.122979.
  • 78. Xu D., Han X., Chen H., Yuan R., Wang F., Zhou B. 2020. New insights into impact of thermal hydrolysis pretreatment temperature and time on sewage sludge: Structure and composition of sewage sludge from sewage treatment plant. Environmental Research, 191, 110122. DOI: 10.1016/j.envres.2020.110122.
  • 79. Zeynali R., Khojastehpour M., Ebrahimi-Nik M. 2017. Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustainable Environment Research, 27, 259–264. DOI: 10.1016/j.serj.2017.07.001.
  • 80. Zhang S., Guo X., Zhu Z., Sun Z., Yang J., Zhao J., Shen L., Rosendahl L., Chen G. 2023. Influence of sodium hypochlorite/ultrasonic pretreatment on sewage sludge and subsequent hydrothermal liquefaction: Study on reaction mechanism and properties of bio-oil. Biomass and Bioenergy, 175, 106872.
  • 81. Zhen G., Lu X., Kato H., Zhao Y., Li Y.Y. 2017. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559–577. DOI: 10.1016/j.rser.2016.11.187.
  • 82. Zielewicz E. 2016. Effects of ultrasonic disintegration of excess sewage sludge. Topics in Current Chemistry, 374, 1–26. DOI: 10.1007/s41061-016-0068-5.
  • 83. Zieliński M., Dȩbowski M., Krzemieniewski M., Rusanowska P., Zielińska M., Cydzik-Kwiatkowska A., Głowacka-Gil A. 2018. Application of an innovative ultrasound disintegrator for sewage sludge conditioning before methane fermentation. Journal of Ecological Engineering, 19, 240–247. DOI: 10.12911/22998993/89817.
  • 84. Zubrowska-Sudol M., Sytek-Szmeichel K., Krawczyk P., Bisak A. 2022. Energy-Positive Disintegration of Waste Activated Sludge—Full Scale Study. Energies, 15, 1–11. DOI: 10.3390/en15020555.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36a11efc-7d47-4bc6-ad98-b6a88d425efe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.