PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast Estimation of Favorable Parameters of Hot Metal Forming, Using the Fuzzy Logic Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an approach based on the use of the fuzzy logic method as a tool for quick estimation of favorable parameters of hot plastic working of selected alloy and for the identification of those combinations of parameters that should be avoided. The idea and basic principles of operation of fuzzy controllers for the selection of thermo-mechanical parameters of hot metal forming were presented. The most important information necessary for a quick analysis based on knowledge engineering has been compiled. An example of the fuzzy controller using the information obtained based on plastometric test data and the results of observation of the microstructure state of deformed samples at various temperature and strain rate variants is presented. For the tested alloy, it was shown that the analysis of the parameters of their plastic processing using the fuzzy logic method, based on properly formulated expert knowledge, leads to obtaining satisfactory results. Thus, it was confirmed that fuzzy logic can be successfully used as a tool for quick estimation of correct or unfavorable thermal and mechanical combinations of hot forging processes.
Twórcy
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] X.W. Duan, J.J. Liu, P. Li, J.S. Liu, Metals and Materials International 27, 1044-1059 (2021).
  • [2] T. Zhong, K.P. Rao, Y.V.R.K. Prasad, M. Gupta, Materials Science & Engineering A 559, 773-781 (2013).
  • [3] O. Lypchanskyi, T. Śleboda, M. Wojtaszek, K. Muszka, A. Łukaszek-Sołek, R. Stanik, M. Gude, International Journal of Material Forming 14, 523-532 (2021).
  • [4] K. Zyguła, M. Wojtaszek, O. Lypchanskyi, T. Śleboda, G. Korpała, U. Prahl, Metallurgical and Materials Transactions A, 50, 5314-5323 (2019).
  • [5] J. Norwisz, B. Boryczko, A. Hołda, Z. Kolenda, Arch. Metall. Mater. 54 (1), 153-159 (2009).
  • [6] l.A. Zadeh, Inform. Control 12, 94-102 (1968).
  • [7] M.A. Hassan, K. Yamaguchi, N. Takakura: A fuzzy model for prediction of material flow-stress in metal forming. 7th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 2001). Proceedings Paper: Simulation of materials processing: Theory, Methods and Applications, 2001, pp. 033-308.
  • [8] S. Raßbach, W. Lehnert, Computational Materials Science 16 (1-4), 167-175 (1999).
  • [9] Z. Gronostajski, M. Hawryluk, M. Kaszuba, M. Marciniak, A. Niechajowicz, S. Polak, M. Zwierzchwoski, A. Adrian, B. Mrzygłód, J. Durak, Int. J. Adv. Manuf. Technol. 82, 1973-1991 (2016).
  • [10] Y.-H. Lee R. Kopp, Fuzzy Sets Syst. 118 (1), 99-108 (2001).
  • [11] J.L. Yin, D.Y. Li, Y.H. Peng, Int. J. Adv. Manuf. Technol. 29 (3-4), 279-286 (2006).
  • [12] P. Radha, G. Chandrasekaran, N. Selvakumar, Applied Soft Computing 27, 191-204 (2015).
  • [13] M. Wojtaszek, J. Durak, F. Pernal, Kompozyty (Composites) 9 (4), 327-331 (2009).
  • [14] M. Wojtaszek, J. Durak, Metallurgy and Foundry Engineering 33 (1), 23-31 (2007).
  • [15] C. Gologlu, C. Mizrak, Journal of Engineering Design 22 (2), 113-127 (2011).
  • [16] J.A. Stendal, M. Bambach, M. Eisentraut, I. Sizova, S. Weiß, Metals 9, 220 (2019).
Uwagi
Financial support of the National Science Centre (Poland), M-ERA.NET 2 Call 2020, 2020/02/Y/ST8/00107 (AGH-UST project no. 28.28.110.70540) is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-369fd196-f2a2-4a8a-b5c4-e18e500a96a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.