Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Trapped charge dating method using electron spin resonance (ESR) of quartz is progressively used for sediment dating. ESR signals can be used for accurate age estimation only when these signals are zeroed by sunlight exposure before the layer creation or when one knows their ESR residual level (the part of the signal that is not bleached). It is well known that the ESR signal related to the Al-hole centres in quartz used for sediment dating has a significant residual signal. From the point of view of luminescence models, as a hole trap, the Al-hole centre is considered as a recombination centre in quartz. Recently, it was demonstrated experimentally that the ESR signal of the Al-hole centre is dependent on the total dose absorbed by the quartz sample in the past. The same effect was confirmed by simulations of the charge transport processes for a model including two recombination centres. Here, the dependence of residual hole concentration (RHC) in the recombination centres on the total dose absorbed by a sample in the past is studied in detail by computer simulations for a wide range of model parameters. The impact that the various relations of centre parameters have on the dependence of the residual as a function of dose is investigated and the implications for the dating practice are discussed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
415--427
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Institute of Physics Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń Toruń, Poland
autor
- Faculty of Environmental Science and Engineering, Department of Environmental Analysis and Engineering, Babeş-Bolyai University Cluj-Napoca, Romania
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Center of Environmental Radioactivity and Nuclear Dating, Babeş-Bolyai University Cluj-Napoca, Romania
autor
- Institute of Physics Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń Toruń, Poland
Bibliografia
- 1. Adamiec G, Bailey RM, Wang XL and Wintle AG, 2008. The mechanism of thermally transferred optically stimulated luminescence in quartz. Journal of Physics D: Applied Physics 41(13): 135503. DOI 10.1016/stacks.iop.org/JPhysD/41/135503.
- 2. Adamiec G, Bluszcz A, Bailey RM and Garcia-Talavera M, 2006. Finding model parameters: Genetic algorithms and the numerical modelling of quartz luminescence. Radiation Measurements 41(7–8): 897–902. DOI 10.1016/j.radmeas.2006.05.005.
- 3.Adamiec G, Garcia-Talavera M, Bailey RM and De La Torre PI, 2004. Application of a genetic algorithm to finding parameter values for numerical simulation of quartz luminescenc. Geochronometria 23: 9–14.
- 4. Aitken MJ, 1998. An Introduction to Optical Dating, Oxford University Press, Oxford.
- 5. Bahain JJ, Duval M, Voinchet P, Tissoux H, Falguères C, Grün R, Moreno D, Shao Q, Tombret O, Jamet G, Faivre J-P and Cliquet D, 2020. ESR and ESR/Useries chronology of the Middle Pleistocene site of Tourville-la-Rivière (Normandy, France) – A multi-laboratory approach. Quaternary International 556: 58–70. DOI 10.1016/j.quaint.2019.06.015.
- 6. Bailey RM and Arnold LJ, 2006. Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose. Quaternary Science Reviews 25: 2475–2502. DOI 10.1016/j.quascirev.2005.09.012
- 7. Bailey RM, 2001. Towards a general kinetic model for optically and thermally stimulated luminescence of quartz. Radiation Measurements 32: 17–45. DOI 10.1016/S1350-4487(00)00100-1.
- 8. Bartz M, Duval M, Brill D, Zander A, King GE, Rhein A, Walk J, Stauch G, Lehmkuhl F, and Brückner H, 2020. Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments. Quaternary International 556: 124–143. DOI 10.1016/j.quaint.2020.03.037.
- 9. Bartz M, Rixhon G, Duval M, King GE, Alvarez-Posada C, Parés JM and Brückner H, 2018. Successful combination of electron spin resonance, luminescence and palaeomagnetic dating methods allows reconstructing the Quaternary evolution of the lower Moulouya River (NE Morocco). Quaternary Science Reviews 185: 153–171. DOI 10.1016/j.quascirev.2017.11.008.
- 10. Chen R, Lawless JL and Pagonis V, 2020. Competition between long time excitation and fading of thermoluminescence (TL) and optically stimulated luminescence (OSL). Radiation Measurements 136: 106422. DOI 10.1016/j.radmeas.2020.106422.
- 11. Chruścińska A and Przegiętka KR, 2005. Quartz TL decay due to optical bleaching, Geochronometria 24: 1–6.
- 12. Demuro M, Arnold LJ, Duval M, Méndez-Quintas E, Santonja M and Pérez-González A, 2020. Refining the chronology of Acheulean deposits at Porto Maior in the River Miño basin (Galicia, Spain) using a comparative luminescence and ESR dating approach. Quaternary International 556: 96–112. DOI 10.1016/j.quaint.2020.01.005.
- 13. Duval M and Guilarte V, 2015. ESR dosimetry of optically bleached quartz grains extracted from Plio-Quaternary sediment: Evaluating some key aspects of the ESR signals associated to the Ti-centers. Radiation Measurements 78: 28–41. DOI 10.1016/j.radmeas.2014.10.002.
- 14. Duval M, Arnold LJ, Guilarte V, Demuro M, Santonja M, and Perez-Gonzalez A, 2017. Electron spin resonance dating of optically bleached quartz grains from the Middle Palaeolithic site of Cuesta de la Bajada (Spain) using the multiple centres approach. Quaternary Geochronology 37: 82–96. DOI 10.1016/j.quageo.2016.09.006.
- 15. Duval M, Voinchet P, Arnold LJ, Parés JM, Minnella W, Guilarte V, Demuro M, Falguères C, Bahain J-J and Despriée J, 2020. A multi-technique dating study of two lower palaeolithic sites from the cher valley (Middle loire catchment, France): luneryla Terre-des-Sablons and brinay-la Noira. Quaternary International 556: 71–87. DOI 10.1016/j.quaint.2020.05.033.
- 16. Friedrich J, Kreutzer S and Schmidt C, 2016. Solving ordinary differential equations to understand luminescence: ‘RLumModel’, an advanced research tool for simulating luminescence in quartz using R, Quaternary Geochronology 35: 88–100. DOI 10.1016/j.quageo.2016.05.004.
- 17. Friedrich J, Pagonis V, Chen R, Kreutzer S and Schmidt C, 2017. Quartz radiofluorescence: A modelling approach. Journal of Luminescence 186: 318–325. DOI 10.1016/j.jlumin.2017.02.039.
- 18. Grün R, 2020. A very personal, 35 years long journey in ESR dating, Quaternary International 556: 20–37. DOI 10.1016/j.quaint.2018.11.038.
- 19. Lund A and Shiotani M (Eds.), 2014. Applications of EPR in radiation research. Springer Cham Heidelberg, New York, Dordrecht London.
- 20. Müller A, Wanvik JE and Ihlen PM, 2012. Petrological and chemical characterisation of high-purity quartz deposits with examples from Norway. In: Götze J and Möckel R, eds., Quartz: Deposits, Mineralogy and Analytics. Springer-Verlag, Berlin, 71–118.
- 21. Müller A, Wiedenbeck M, van den Kerkhof AM, Kronz A and Simon K, 2003. Trace elements in quartz – a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. European Journal of Mineralogy 15(4): 747–763. DOI 10.1127/0935-1221/2003/0015-0747.
- 22. Pagonis V, Chithambo ML, Chen R, Chruścińska A, Fasoli M, Li SH, Martini M and Ramseyer K, 2014. Thermal dependence of luminescence lifetimes and radioluminescence in quartz. Journal of Luminescence 145: 38–48. DOI 10.1016/j.jlumin.2013.07.022.
- 23. Peng J and Pagonis V, 2016. Simulating comprehensive kinetic models for quartz luminescence using the R program KMS, Radiation Measurements 86: 63–70. DOI 10.1016/j.radmeas.2016.01.022.
- 24. Preusser F, Chithambo ML, Götte T, Martini M, Ramseyer K, Sendezera EJ, Susino GJ and Wintle AG, 2009. Quartz as a natural luminescence dosimeter. Earth-Science Reviews 97: 184–214. DOI 10.1016/j.earscirev.2009.09.006.
- 25. Przegiętka KR, Richter D, Chruścińska A, Oczkowski HL, Lankauf KR, Szmańda JB, Luc M and Chudziak W, 2005. Quartz luminescence applied in palaeoenvironmental reconstruction of a dune. Physica Scripta 118: 257–260.
- 26. Rink WJ, 1997. Electron spin resonance (ESR) dating and ESR applications in quaternary science and archaeometry. Radiation Measurements 27(5–6): 975–1025. DOI 10.1016/S1350-4487(97)00219-9.
- 27. Rink WJ, Bartoll J, Schwarcz HP, Shane P and Bar-Yosef O, 2007. Testing the reliability of ESR dating of optically exposed buried quartz sediments. Radiation Measurements 42: 1618–1626. DOI 10.1016/j.radmeas.2007.09.005.
- 28. Rizal Y, Westaway KE, Zaim Y, van den Bergh GD, Bettis EA III, Morwood MJ, Huffman OF, Grün R, Joannes-Boyau R, Bailey RM, Sidarto, Westaway MC, Kurniawan I, Moore MW, Storey M, Aziz F, Suminto, Zhao J, Aswan, Sipola ME, Larick R, Zonneveld J-P, Scoot R, Putt S and Ciochon RL, 2020. Last appearance of Homo erectus at Ngandong, Java, 117,000-108,000 years ago. Nature 577: 381–385. DOI 10.1038/s41586-019-1863-2.
- 29. Singhivi AK, Sharma YP and Agrawal PD, 1982. Thermoluminescence dating of sand dunes in Rajasthan, India. Nature 295: 313–315. DOI 10.1038/295313a0.
- 30. Smith BW and Rhodes EK, 1994. Charge movements in quartz and their relevance to optical dating. Radiation Measurements 23(2–3): 329–333. DOI 10.1016/1350-4487(94)90060-4.
- 31. Spooner NA, 1994. On the optical dating signal from quartz. Radiation Measurements 23(2–3): 593–600. DOI 10.1016/1350-4487(94)90105-8.
- 32. Timar-Gabor A, Chruścińska A, Benzid K, Fitzsimmons KE, Begy R and Bailey M, 2020. Bleaching studies on Al-hole ([AlO4/h]0) electron spin resonance (ESR) signal in sedimentary quartz. Radiation Measurements 130: 106–221. DOI 10.1016/j.radmeas.2019.106221.
- 33. Tissoux H, Falguères C, Voinchet P, Toyoda S, Bahain JJ and Despriée J, 2007. Potential use of Ti-center in ESR dating of fluvial sediment, Quaternary Geochronology 2 (1–4); 367–372. DOI 10.1016/j.quageo.2006.04.006.
- 34. Tissoux H, Voinchet P, Lacquement F, Prognon F, Moreno D, Falguères Ch, Bahain J-J and Toyoda S, 2012. Investigation on non-optically bleachable components of ESR aluminium signal in quartz. Radiation Measurements 47(9): 894–899. DOI 10.1016/j.radmeas.2012.03.012.
- 35. Toyoda S and Falguéres C, 2003. The method to represent the ESR signal intensity of the aluminium hole center in quartz for the purpose of dating. Advances in ESR applications 20: 7–10.
- 36. Toyoda S, Voinchet P, Falguéres C, Dolo JM and Laurent M, 2000. Bleaching of ESR signals by the sunlight: A laboratory experiment for establishing the ESR dating of sediments. Applied Radiation and Isotopes 52(5), 1357–1362. DOI 10.1016/S0969-8043(00)00095-6.
- 37. Tsukamoto S, Long H, Richter M, Li Y, King GE, He Z, Yang L, Zhang J and Lambert R, 2018. Quartz natural and laboratory ESR dose response curves: A first attempt from Chinese loess. Radiation Measurements 120: 137–142. DOI 10.1016/j.radmeas.2018.09.008
- 38. Tsukamoto S, Porat N and Ankjærgaard C, 2017. Dose recovery and residual dose of quartz ESR signals using modern sediments: Implications for single aliquot ESR dating. Radiation Measurements 106: 472–476. DOI 10.1016/j.radmeas.2017.02.010.
- 39. Voinchet P, Falguéres C, Laurent M, Toyoda S, Bahain JJ and Dolo JM, 2003. Artificial optical bleaching of the Aluminium center in quartz implications to ESR dating of sediments. Quaternary Science Reviews 22: 1335–1338. DOI 10.1016/S0277-3791(03)00062-3.
- 40. Voinchet P, Toyoda S, Falguères C, Hernandez M, Tissoux H, Moreno D and Bahain J-J, 2015. Evaluation of ESR residual dose in quartz modern samples, an investigation on environmental dependence. Quaternary Geochronology 30: 506–512.
- 41. Walther R and Zilles D, 1994. ESR studies on bleaches sedimentary quartz. Quaternary Geochronology 13(5–7), 611–614. DOI 10.1016/0277-3791(94)90086-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-369f4778-f661-43d1-9e88-2d7062bc5fb0