PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Sintering Time on Wear Resistance of Silicon Nitride

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of sintering time on the chosen mechanical and tribological properties of silicon nitride (Si3N4) with 5 wt.% of yttrium aluminium garnet (Y3Al5O12) ceramics was investigated. The Si3N4 ceramics sintered for shorter time contained a larger portion of untransformed a-Si3N4 phase which has higher hardness compared to the tougher β-Si3N4 phase. The fracture toughness of Si3N4 ceramics increased with the prolongation of its sintering time. The microcutting wear mechanisms predominated during the grinding of the Si3N4 ceramics with the Al2O3 abrasives. The hardness of ceramic material had a great effect on its wear resistance. The wear of ceramics at friction with 18Cr-8Ni type of austenitic stainless steels was several times higher compared to friction with 14Cr type of ferritic stainless steel. Under these conditions, the microcracking wear mechanisms predominated.
Twórcy
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
autor
  • Institute of Technologies and Materials, Faculty of Mechanical Engineering, STU Bratislava, Námestie Slobody 17, 812 31 Bratislava, Slovak Republic
Bibliografia
  • 1. Daubera, C., Vannucchi de Camargoa, F., Kopp Alvesa, A., Pavlovic, A., Fragassa, C., Pérez Bergmanna, C. Erosion resistance of engineering ceramics and comparative assessment through Wiederhorn and Evans equations. Wear, 432–433, 2019, 1–13.
  • 2. Popov, V.L. Adhesive wear: Generalized Rabinowicz criteria, Facta Univ. – Ser. Mech. Eng., 6, 2018, 29–39.
  • 3. More, S.R., Bhatt, D.V., Menghani, J.V. Recent research status on erosion wear – anoverview. Mater. Today, 4, 2017, 257–266
  • 4. Wang, R.W. Snidle, L. Gu, Rolling contact silicon nitride bearing technology: a review of recent research. Wear, 246, 2000, 159–173.
  • 5. Kadin, Y. Modeling of hydrogen transport in static and rolling contact. Trib. Trans., 58(2), 2015, 260–273.
  • 6. Vieillard, C., Kadin, Y., Morales-Espejel, G.E., Gabelli, A. An experimental and theoreticalstudy of surface rolling contact fatigue damage progression in hybrid bearings with artificial dents. Wear, 364–365, 2016, 211–223.
  • 7. Tang, Y., Yonezu, A., Ogasawara, N., Chiba, N., Chen, X. On radial crack and halfpenny crack induced by Vickers indentation. Proc. R. Soc., A 464, 2008, 2967–2984.
  • 8. Chen, X., Hutchinson, J.W., Evans, A.G. The mechanics of indentation induced lateral cracking. J. Am. Ceram. Soc., 88(5), 2005, 1233–1238.
  • 9. Niihara, K., Morena, R., Hasselman, D.P.H. Evaluation of KIC of brittle solids by theindentation method with low crack-to-indentation ratios. J. Mater. Sci. Lett., 1(1), 1982, 13–16.
  • 10. Kida, K., Urakami, T., Yamazaki, T., Kitamura, K. Surface crack growth of silicon nitride bearings under rolling contact fatigue. Fatigue Fract. Eng. Mater. Struct., 27, 2004, 657–668.
  • 11. Chen, Z., Wang, X., Atkinson, A., Brandon, N. Spherical indentation of porous ceramics: cracking and toughness. J. Eur. Ceram. Soc., 36, 2016, 3473–3480.
  • 12. Kadina, Y., Mazaheria, M., Zolotarevsky, V., Vieillarda, Ch., Hadfield, M. Finite elements based approaches for the modelling of radial crack formation upon Vickers indentation in silicon nitride ceramics. Journal of the European Ceramic Society, 39(14), 2019, 4011–4022.
  • 13. Hyun, H.G., Rickhey, F., Lee, J.H., Hahn, J.H., Lee, H. Characteristics of indentation cracking using cohesive zone finite element techniques for pyramidal indenters. Int.J. Solids Struct., 51, 2014, 4327–4335.
  • 14. Yonezu, A. Hara, T. Kondo, T. Hirakata, H. Minoshima, K. Evaluation of threshold stress intensity factor of hydrogen embrittlement cracking by indentation testing. Mater. Sci. Eng., A 531, 2012, 147–154.
  • 15. Rickhey, F., Marimuthu, K.P., Lee, H. Investigation on indentation cracking-based approaches for residual stress evaluation. Materials, 10 (4), 2017, 1–16.
  • 16. Rabinowicz, E. Friction and wear of materials. Second Edition, John Wiley & Sons, 1995.
  • 17. Krageľskij, I.V., Dobychin, M.N., Kombalov, V.S. Friction and wear, Calculation Methods. Oxford: Pergamon Press, 1982
  • 18. Lee, J.H., Gao, Y.F., Johanns, K.E., Pharr, G.M. Cohesive interface simulations of indentation cracking as a fracture toughness measurement method for brittle materials. Acta Mater., 60, 2012, 5448–5467.
  • 19. Švec, P., Brusilová, A. Tribologické vlastnosti nitride kremíka. Nakladateľstvo STU, 2011.
  • 20. Raga, R., Khadera, I., Chlup, Z., Kailer, A. Damage progression in silicon nitride undergoing non-conforming hybrid cyclic contact. International Journal of Fatigue, 105, 2017, 97–110.
  • 21. Brizmer, V., Gabelli, A., Vieillard, C., Morales- Espejel, G.E. An experimental and theoretical study of hybrid bearing micropitting performance under reduced lubrication. Tribol. Trans, 58, 2015, 829–835.
  • 22. Reis, P., Davim, J.P., Xu, X., Ferreira, J.M.F. Friction and wear behaviour of betasilicon nitride–steel couples under unlubricated conditions. Mater. Sci.Technol., 22, 2006, 247–52.
  • 23. Zhou, J., Wu, G. Experimental study of cyclic rolling-contact fatigue of silicon nitride balls. Tribol, Trans, 52, 2009, 663–70.
  • 24. Akdogan, G. Stolarski, T.A. Wear in metal/silicon nitride sliding pairs. Ceramics International, 29, 2003, 435–446
  • 25. Khadera, I., Renz, A., Kailer, A. A wear model for silicon nitride in dry sliding contact against a nickel-base alloy. Wear, 376–377(A), 352–362.
  • 26. Yang, J. F., Ohji, T. Influence of Yttria–Alumina Content on Sintering Behavior and Microstructure of Silicon Nitride Ceramics. J. Amer. Soc., 83, 2000, 2094–2096.
  • 27. Bellosi, A., Babini, G. N. Effects of raw powders on microstructure and properties of Si3N4-based ceramics. Key Engineer. Materials, 161–163, 1999, 203–208.
  • 28. Zhang, Y. H., Edwards, L., Plumbridge, W.J. Crack Healing in a Silicon Nitride Ceramic. J. Amer. Ceram. Soc., 81, 1998, 1861–1868.
  • 29. Kawaoka, H., Choa, Y. H., Niihara, K. Relationship between Microstructure and Mechanical Properties for Silicon Nitride Based Ceramics Fabriacted by PECS. Key Eng. Mater., 161–163, 1998, 225–228.
  • 30. Nakamura, M., Hirao, K. Wear behaviour of a- Si3N4 ceramics reinforced by rod-like b-Si3N4 grains. Wear, 254, 2003, 94–102.
  • 31. Xing-Zhong Z., Jia-Jun L., Baoliang Z. Wear behaviour of Si3N4 ceramic cutting tool material against stainless steel. Ceramics Intern., 25, 1999, 309–315.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-369e0235-fadc-4569-8ace-7e9cd198be76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.