PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of Microstructure and Surface Properties of Ti-6Al-4V Alloy by MoSi2 Particles Using Micro-Arc Oxidation Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As an effective surface modification technique, micro-arc oxidation (MAO) is now widely used to improve the hardness and wear resistance of Ti and its alloys by low-cost and thick ceramic coatings. In this study, MoSi2 – modified ceramic coatings were deposited on Ti–6Al–4V alloy (340 HV) by MAO using an aqueous solution of (Na2SiO3),(NaPO3)6 and (NaOH) and MoSi2 particles. MoSi2 particles (3, 5, and 7 g/l) from wastes of furnaces electrodes were introduced into the electrolyte to improve the microstructure and surface properties of Ti-6Al-4V alloys. A scanning electron microscope (SEM), dispersive spectroscopy (EDS), X-ray diffraction (XRD), and mechanical tests (microhardness and wear) were used to identify the coating properties, morphologies, and phases. The findings showed that the addition of (5g/l) MoSi2 increased the thickness and hardness of MAO coatings from (19.08µm) and (910 HV) to (33.12µm) and (1260 HV), respectively. Also, the wear resistance by means of weight losses of uncoated alloys enhanced by (68 %) and (100%) after MAO and (5g/l) MoSi2 modified-MAO coatings, respectively. Results of this work will promote future works in using of industrial wastes in surface engineering of Ti-6Al-4V alloys by MAO technique for wear resistance applications.
Słowa kluczowe
Twórcy
  • ollege of Materials Engineering, University of Babylon, Iraq
  • ollege of Materials Engineering, University of Babylon, Iraq
  • ollege of Materials Engineering, University of Babylon, Iraq
Bibliografia
  • 1. Xin G., Wu C., Cao H., Liu W., Li B., Huang Y., Rong Y., Zhang G. Super hydrophobic TC4 alloy surface fabricated by laser micro-scanning to reduce adhesion and drag resistance. Surface and Coatings Technology, 2020, 391, 125707.
  • 2. Zhang S., Zhao C., Zhang J., Lian Y., He Y. C-Al2 O 3 coatings prepared by cathode plasma electrolytic deposition on TC4 substrate for better high temperature oxidation resistance. Surface and Coatings Technology, 2021, 405, 126585.
  • 3. Xie R., Lin N., Zhou P., Zou J., Han P., Wang Z., Tang B. A surface damage mitigation of TC4 alloy via micro arc oxidation for oil and gas exploitation application: Characterizations of microstructure and evaluations on surface performance. Applied Surface Science, 2018, 436, 467-476.
  • 4. Jażdżewska M., Majkowska-Marzec B., Ostrowski R., Olive J.-M. Influence of surface laser treatment on mechanical properties and residual stresses of titanium and its alloys. Advances in Science and Technology Research Journal 2023, 17(6), 27–38.
  • 5. Majkowska-Marzec B., Sypniewska J. Microstructure and mechanical properties of laser surfacetreated ti13nb13zr alloy with mwcnts coatings. Advances in Materials Science, 21(4) 70, 2021.
  • 6. Yamanoglu R., Fazakas E., Ahnia F., Alontseva D., Khoshnaw F. Pitting corrosion behaviour of austenitic stainless-steel coated on Ti6Al4V alloy in chloride solutions. Advances in Materials Science, 2021, 21, 2(68).
  • 7. Lai-Chang Zhang, Liang-Yu Chen, Liqiang Wang. Surface modification of titanium and titanium alloys: technologies, developments and future interests. Advanced Engineering Materials, 2020, 22(5), 1901258.
  • 8. Quanzhi Chen, Zhiqiu Jiang, Shiguang Tang, Wanbing Dong, Qing Tong, Weizhou Li. Influence of graphene particles on the micro-arc oxidation behaviors of 6063 aluminum alloy and the coating properties. Applied Surface Science, 2017, 423, 939-950.
  • 9. Wei Yang, Shangkun Wu, Dapeng Xu, Wei Gao, Yuhong Yao, Qiaoqin Guo, Jian Chen. Preparation and performance of alumina ceramic coating doped with aluminum nitride by micro arc oxidation. Ceramics International, 2020, 46(10) Part B, 17112-17116.
  • 10. Dzhurinskiy D., Gao Y., Yeung W.-K., Strumban E., Leshchinsky V., Chu P.-J., Matthews A., Yerokhin A., Maev R.Gr.. Characterization and corrosion evaluation of TiO 2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 269, 258-265.
  • 11. Wheeler J.M., Collier C.A., Paillard J.M., Curran J.A. Evaluation of micromechanical behaviour of plasma electrolytic oxidation (PEO) coatings on Ti–6Al–4V. Surface and Coatings Technology, 2010, 204(21–22), 3399-3409.
  • 12. Jingtao Wang, Yaokun Pan, Rui Feng, Hongwei Cui, Benkui Gong, Lei Zhang, Zengli Gao, Xiaoli Cui., Hongbin Zhang, Zhiqiang Jia. Effect of electrolyte composition on the microstructure and biocorrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy. Journal of Materials Research and Technology, 2020, 9(2), 1477-1490.
  • 13. Saurabh A., Meghana C.M., Singh P.K., Verma P.C. Titanium-based materials: synthesis, properties, and applications. Materials Today: Proceedings, 2022, 56, 412–419.
  • 14. Pesode P., Barve S., Wankhede S.V., Jadhav D.R., Pawar S.K. Titanium alloy selection for biomedical application using weighted sum model methodology. Materials Today: Proceedings, 2023, 72, 724–728.
  • 15. Carabat A.L., Meijerink M.J., Brouwer J.C., Kelder E.M., van Ommen J.R., van der Zwaag S., Sloof W.G. Protecting the MoSi2 healing particles for thermal barrier coatings using a sol-gel produced Al 2O 3 coating. Journal of the European Ceramic Society, 2018, 38(7), 2728-2734.
  • 16. Zhongren Zheng, Ming-Chun Zhao, Lili Tan, Ying-Chao Zhao, Bin Xie, Dengfeng Yin, Ke Yang, Atrens A. Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation. Surface and Coatings Technology, 2020, 386, 125456.
  • 17. Wei Yang, Dapeng Xu, Xiaofei Yao, Jianli Wang, Jian Chen. Stable preparation and characterization of yellow micro arc oxidation coating on magnesium alloy. Journal of Alloys and Compounds, 2018, 745, 609-616.
  • 18. Bih-Show Lou., Jyh-Wei Lee., Chuan-Ming Tseng., Yi-Yuan Lin., Chien-An Yen. Mechanical property and corrosion resistance evaluation of AZ31 magnesium alloys by plasma electrolytic oxidation treatment: Effect of MoS2 particle addition. Surface and Coatings Technology, 2018, 350, 813-822.
  • 19. Chen X.W., Li. M.L, Zhang D.F., Cai L.P., Ren R., Hu J., Liao D.D. Corrosion resistance of MoS2-modified titanium alloy micro-arc oxidation coating. Surface and Coatings Technology, 2022, 433, 128127.
  • 20. Erdoğan A., Gök M.S., Koç. V., Günen A. Friction and wear behavior of epoxy composite filled with industrial wastes. Journal of Cleaner Production, 2019, 237, 117588. doi: 10.1016/j.jclepro.2019.07.063.
  • 21. Aigbodion V.S., Akinlabi E.T. Explicit microstructural evolution and electrochemical performance of zinc-eggshell particles composite coating on mild steel. Surfaces and Interfaces, 17, 2019, 100387.
  • 22. Berthod P. Room temperature hardness of carbidesstrengthened cast alloys in relation with their carbon content and the aging temperature, Part I: Case of nickel alloys. Materials Science and Technology, 2009, 25(5), 663-669.
  • 23. Zhecheva A., Sha W., Malinov S., Long A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surface & Coatings Technology, 2005, 200(7), 2192–2207.
  • 24. Nan Ye, Yunzhu Ma, Jiancheng Tang. Microstructure and wear resistance of bimodal cemented carbide coating prepared by direct laser powder deposition. Materials Research Express, 221, 8, 066508.
  • 25. Carter C.B., Norton M.G. Ceramic materials, science and engineering. Textbook. 2013, 495-508, Publisher Springer New York.
  • 26. Belin-Ferre E. Surface properties and engineering of complex intermetallic. Book Series on Complex Metallic Alloys, 2010, 3, pp. 48.
  • 27. Awad S.H. A new method for deposition of ceramic coating on al alloy using duplex processes of anodizing and Al2 O 3 modified electrolyte micro arc oxidation (MAO). The Iraqi Journal for Mechanical and Material Engineering, 2020, 20(4).
  • 28. Guleryuz H., Cimenoglu H. Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti–6Al–4V alloy. Biomaterials, 2004, 25, 3325–3333.
  • 29. Nie X., Leyland A., Song H.W., Yerokhin A.L., Dowey S.J., Matthews A. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys. Surface and Coatings Technology, 1999, 116–119, 1055–1060.
  • 30. Tapia-López J., Pech-Canul M.I., García H.M. Processing, microstructure, properties, and applications of MoSi 2 -containing composites: A review. International Advanced Research Center for Powder Metallurgy and New Materials, India, 12 July 2023.
  • 31. Khorasanian M., Dehghan A., Shariat M.H., Bahrololoom M.E., Javadpour S. Microstructure and wear resistance of oxide coatings on Ti–6Al–4V produced by plasma electrolytic oxidation in an inexpensive electrolyte. Surface & Coatings Technology, 2011, 206, 1495–1502.
  • 32. Sameezadeh M., Emamy M., Farhangi H. Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Materials & Design, 2011, 32(4), 2157-2164.
  • 33. Cimenoglu H., Gunyuz M., Kose G.T., Baydogan M., Uğurlu F., Sener C. Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Materials Characterization, 2011, 62, 304–311.
  • 34. Hongbo Ba, Yuzhu Fu. Effect of micro-arc oxidation coatings with different thickness on high cycle fatigue performance of Ti-6Al-4V titanium alloy. Journal of Physics: Conference Series, 2022, 2187, 012031.
  • 35. Cardoso G.C., Kuroda P.A.B., Grandini C.R. A detailed analysis of the MAO TiO coating hardness using the Jönsson and Hogmark “law-of-mixtures” model. Materials Letters, 2023, 352, 135208.
  • 36. Grigoriev S., Peretyagin N., Peretyagin N., Apelfeld A., Smirnov A., Rybkina A., Kameneva E., Zheltukhin A., Gerasimov M., Volosova M., Yanushevich O., Krikheli N., Peretyagin P. Investigation of the characteristics of MAO coatings formed on Ti6Al4V titanium alloy in electrolytes with graphene oxide additives. Journal of Composites Science, 2023, 7(4), 142.
  • 37. Wang Y.M., Lei T.Q., Guo L.X., Jiang B.L. Fretting wear behaviour of microarc oxidation coatings formed on titanium alloy against steel in unlubrication and oil lubrication. Applied Surface Science, 2006, 252, 8113–8120.
  • 38. Lin X.Z., Zhu M.H., Zheng J.F., Luo J., Mo J.L. Fretting wear of micro-arc oxidation coating prepared on Ti6Al4V alloy. Transactions of Nonferrous Metals Society of China, 2010, 20, 537–546.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3699f55c-19f3-4d33-a4a8-12713a49d21b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.