PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An automated ECG signal quality assessment method for unsupervised diagnostic systems

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors present an automated method for quality assessment of electrocardiogram (ECG) signal. Our proposed method not only detects and classifies the ECG noises but also localizes the ECG noises which can play a crucial role in extracting reliable clinical features for ECG analysis systems. The proposed method is based on three stages: Wavelet decomposition of ECG signal into sub-bands; simultaneous ECG signal and noise reconstruction; extraction of temporal features such as maximum absolute amplitude, zerocrossings, kurtosis and autocorrelation function for detection, localization and classification of ECG noises including flat line (FL), time-varying noise or pause (TVN), baseline wander (BW), abrupt change (AB), power line interference (PLI), muscle artifacts (MA) and additive white Gaussian noise (AWGN). The proposed method is tested and validated against manually annotated ECG signals corrupted with aforementioned noises taken from MIT-BIH arrhythmia database, Physionet challenge database, and real-time recorded ECG signals. Comparative detection and classification results depict the superior performance of the proposed method over state of art methods. Detection results show that our method can achieve an average sensitivity (Se), average specificity (Sp) and accuracy (A) of 99.61%, 98.51%, 99.49% respectively. Also, the method achieves a Se of 98.18%, and Sp of 94.97% for real-time recorded ECG signals. The method has an average timing error of 0.14 s in localizing the noise segments. Further, classification results demonstrate that the proposed method achieves an average sensitivity (Se), average positive predictivity (PP) and classification accuracy (Ac) of 98.53%, 98.89%, 97.50% respectively.
Twórcy
autor
  • Dept. of Electrical Engineering, Shiv Nadar University, Greater Noida, Uttar Pradesh 201314, India
autor
  • Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, India
  • Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha, India
Bibliografia
  • [1] Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man Cybern C Appl Rev 2010;40(1):1–12.
  • [2] Kotas M, Moron T. ECG signals reconstruction in subbands for noise suppression. Biocybern Biomed Eng 2017;37 (December (3)):453–65.
  • [3] Awal MA, Mostafa SS, Ahmad M, Rashid MA. An adaptive level dependent wavelet thresholding for ECG denoising. Biocybern Biomed Eng 2014;34(4):238–49.
  • [4] Jenkal W, Latif R, Toumanari A, Dliou A, El B'charri O, Maoulainine FMR. An efficient algorithm of ECG signal denoising using the adaptive dual threshold filter and the discrete wavelet transform. Biocybern Biomed Eng 2016;36 (3):499–508.
  • [5] Sharma LN, Dandapat S, Mahanta A. ECG signal denoising using higher order statistics in Wavelet subbands. Biomed Signal Process Control 2010;5(3):214–22.
  • [6] Jekova I, Krasteva V, Christov I, Abdcherli R. Threshold-based system for noise detection in multilead ECG recordings. Physiol Meas 2012;33(9):1463–77.
  • [7] Singh P, Pradhan G, Shahnawazuddin S. Denoising of ECG signal by non-local estimation of approximation coefficients in DWT. Biocybern Biomed Eng 2017;37(3): 599–610.
  • [8] Sukor JA, Redmond SJ, Lovell NH. Signal quality measures for pulse oximetry through waveform morphology analysis. Physiol Meas 2011;32(3):369–84.
  • [9] Sukor JA. Signal quality measures for pulse oximetry and blood pressure signals acquired in unsupervised home telecare environments, Doc. Dissert.. The Uni. of New South Wales; 2012.
  • [10] Satija U, Ramkumar B, Manikandan MS. Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Internet Things J 2017, February (in press).
  • [11] Satija U, Ramkumar B, Manikandan MS. Automated ECG noise detection and classification system for unsupervised healthcare monitoring. IEEE J Biomed Health Inf 2017, March (in press).
  • [12] Satija U, Ramkumar B, Manikandan MS. A simple method for detection and classification of ECG noises for wearable ECG monitoring devices. IEEE Int Conf Signal Process Integrated Net (SPIN); 2015.
  • [13] Behar J, Oster J, Li Q, Clifford GD. ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans Biomed Eng 2013;60(6):1660–6.
  • [14] Behar J, Oster J, Li Q, Clifford GD. A single channel ECG quality metric, Comput. Cardiology 2012;38:1–384.
  • [15] Redmond SJ, Xie Y, Chang D, Basilakis J, Lovell NH. Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiol Meas 2012;33(9):1517–33.
  • [16] Orphanidou C, Bonnici T, Charlton P, Clifton D, Vallance D, Tarassenko L. Signal quality indices for the electrocardiogram and photoplethysmogram: derivation and applications to wireless monitoring. IEEE J Biomed Health Inf 2014;19(3):832–8.
  • [17] Quesnel PX, Chan ADC, Yang H. Signal quality and false myocardial ischemia alarms in ambulatory electrocardiograms. IEEE Int Symp Med Meas Appl (MeMeA). 2014, June. pp. 1–5.
  • [18] Quesnel PX, Chan ADC, Yang H. Real-time biosignal quality analysis of ambulatory ECG for detection of myocardial ischemia. IEEE Int Symp Med Meas Appl Proc (MeMeA). 2013, May. pp. 1–5.
  • [19] Hayn D, Jammerbund B, Schreier G. QRS detection based ECG quality assessment. Physiol Meas 2012;33(9):1449–62.
  • [20] Hayn D, Jammerbund B, Schreier G. ECG quality assessment for patient empowerment in mHealth applications. Comput Cardiol 2011, September;353–6.
  • [21] Johannesen L, Galeotti L. Automatic ECG quality scoring methodology: mimicking human annotators. Physiol Meas 2012;33(9):1479–90.
  • [22] Manikandan MS, Ramkumar B. Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technol Lett 2014;1(1):40–4.
  • [23] Manikandan MS, Soman KP. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control 2012;7(2):118–28.
  • [24] Naseri H, Homaeinezhad MR. Electrocardiogram signal quality assessment using an artificially reconstructed target lead. Comput Methods Biomech Biomed Eng 2014;18 (10):1126–41.
  • [25] Clifford GD, Behar J, Li Q, Rezek I. Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas 2012;33(9):1419–37.
  • [26] Martinez-Tabares FJ, Espinosa-Oviedo J, Castellanos- Dominguez G. Improvement of ECG signal quality measurement using correlation and diversity-based approaches. IEEE Ann Int Conf Eng Med Bio Soc (EMBC); 2012.
  • [27] Tobon Vallejo D, Falk T, Maier M, MS-QI. A modulation spectrum-based ECG quality index for telehealth applications. IEEE Trans Biomed Eng 2014.
  • [28] Morgado E, Alonso-Atienza F, Santiago-Mozos R, Barquero- Prez, Silva I, Ramos J, Mark R. Quality estimation of the electrocardiogram using cross-correlation among leads. Biomed Eng Online 2015;14(1):59.
  • [29] Noponen K, Karsikas M, Tiinanen S, Kortelainen J, Huikuri H, Seppnen T. Electrocardiogram quality classification based on robust best subsets linear prediction error. Comput Cardiol 2011 Sep;365–8.
  • [30] Maan AC, Van Zwet EW, Man S, Oliveira-Martens SM, Schalij MJ, Swenne C. Assessment of signal quality and electrode placement in ECGs using a reconstruction matrix. Comput Cardiol 2011, September;289–92.
  • [31] Chudcek V, Zach L, Kuzilek J, Spilka J, Lhotsk L. Simple scoring system for ECG quality assessment on android platform. Comput Cardiol 2011, September;449–51.
  • [32] Xia H, Garcia GA, McBride JC, Sullivan A, Bock TD, Bains J, Wortham DC, Zhao X. Computer algorithms for evaluating the quality of ECGs in real time. Comput Cardiol 2011;38:369–72.
  • [33] Moody BE. Rule-based methods for ECG quality control. Comput Cardiol 2011;38:361–3.
  • [34] Lee J, McManus DD, Merchant S, Chon KH. Automatic motion and noise artifact detection in Holter ECG data using empirical mode decomposition and statistical approaches. IEEE Trans Biomed Eng 2012;59(6):1499–506.
  • [35] Bouaziz F, Boutana D, Benidir M. Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Process 2014;8(7): 774–82.
  • [36] Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 1995, January;42:21–8.
  • [37] Martnez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 2004;51(4):570–81.
  • [38] Banerjee S, Gupta R, Mitra M. Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement 2012;45(3):474–87.
  • [39] Manikandan MS, Dandapat S. Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomed Signal Process Control 2014;14:73–107.
  • [40] Satija U, Ramkumar B, Manikandan MS. Low-complexity detection and classification of ECG noises for automated ECG analysis system. Int. Conf. Signal Process. Commun. (SPCOM). 2016. pp. 1–5.
  • [41] Satija U, Ramkumar B, Manikandan MS. A robust sparse signal decomposition framework for baseline wander removal from ECG signal. Proc. IEEE Region 10 Conference (TENCON); 2016. pp. 2470–3.
  • [42] Kligfield P, Gettes LS, Bailey JJ, Childers R, Deal BJ, Hancock EW, et al. Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology. J Am Coll Cardiol 2007;49(10):1109–27.
  • [43] Manikandan MS, Soman KP. Robust heart sound activity detection in noisy environments. Elect Lett 2010;46 (16):1100–2.
  • [44] Satija U, Ramkumar B, Manikandan MS. A unified sparse signal decomposition and reconstruction framework for elimination of muscle artifacts from ECG signal. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2016, March. pp. 779–83.
  • [45] McSharry PE, Clifford GD. ECGSYN-a realistic ECG waveform generator. http://www.physionet.org/physiotools/ecgsyn/.
  • [46] http://www.allengers.com/p/electroencephalograph/ electroencephalograph/.
  • [47] http://physionet.org/physiobank/database/mitdb.
  • [48] http://physionet.org/challenge/2011/.
  • [49] Rangayyan RM. Biomedical signal analysis: a case study approach. Wiley, 2009.lograph/.
  • [50] https://glneurotech.com/bioradio/ bioradio-wireless-physiologicalmonitor/.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36882dd9-c5c5-4792-94ab-7ff373b357d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.