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Computational Methods for Stochastic Differential 
Equations and Stochastic Partial 
Differential Equations Involving Standard 
Brownian and Fractional Brownian Motion

Jason Shea, Ioannis Zachariou, Bozenna Pasik-Duncan

University of Kansas (USA)

As more applied science researchers are attempting to use Stochastic Diff erential Equations (SDEs) as well as Stochastic Partial 
Diff erential Equations (SPDEs) in their modeling, especially when involving Fractional Brownian Motion (fBM), one common 
issue appears: an exact solution cannot always be found. For cases involving SPDEs, exact solutions commonly do not exist and 
approximation schemes for their solution are typically still in development. Th erefore, in this paper, we test various Numerical 
methods in solving SDEs and SPDEs with standard BM that have non-linear coeffi  cients. In addition we extend our results to 
problems with fBM.
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Introduction

Stochastic Diff erential Equations (SDEs) and Stochastic 
Partial Diff erential Equations (SPDEs) involving both 
Brownian Motion BM) or fractional Brownian Motion 
(fBM) have been becoming more prevalent in applied 
mathematics and modeling of various systems. Some 
examples of SDE modeling are, but are not limited to, 
fi nance (i.e. Black-Scholes formula), networks (i.e. data 
transfer in wireless communications), biology (i.e. 
arrhythmia, brain signaling after a stroke) etc. In many 
of those cases, years of research and collection of 
empirical data is performed in order to build an 
appropriate model. More often than not though, the 
SDE that best fi ts the data is an SDE that does not have 
a simple analytical solution. Th erefore the need appears 
for a consistent numerical method. Th e applications of 
SPDEs, while certainly still an emerging phenomenon, 
include the modeling of strings or surfaces in random 
media (ie. Objects in moving fl uids and surfaces 
interacting in turbulent environments), solutions to the 
Stochastic Navier-Stokes Equation (which describes the 
motion of fl uids), the Stochastic Heat Equation (which 
describes the diff usion of heat about a uniform medium), 
as well as numerous applications to fi nance and market 
behavior modeling. 

In chapter 2 we cover some brief preliminaries about 
BM, fBM, SDEs and SPDEs that are essential for 
the  numerical approximations we intent to use. 
In  chapter 3 we will state the three diff erent methods 
tested for numerical solutions of SDEs involving 
BM,  present the results of the three methods and 
identify  the best. Once we derive the best method, 
we  extend it to SDEs involving fBM and compare it 
to  an already proposed scheme (I. Lewis). We will 
also extend our analysis to diff erent methods involving 
multidimensional SDEs and their associated methods. 
In chapter 4, we consider approximation schemes 
for  SPDEs and again test different methods, 
identifying  the best. In chapter 5, we state our 
conclusions.

Preliminaries 

What is Brownian Motion (BM)? Th e honor of the 
discovery of the BM belongs to the Scottish botanist 
Robert Brown that originally described it in 1928 [1] as 
he observed it in the movement of pollen particles 
fl oating in liquid. Th e fi rst one to actually construct the 
process was the Missourian mathematician Norbert 
Wiener in 1923. Ergo the process itself is also referred 
to as Wiener Process. 
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Defi nition 2.1 Th e process (B(t), t ≥ 0) is a Brownian 
Motion (BM) if it is a process of independent Gaussian 
increments with zero fi rst moment, i.e. a  standard 
Brownian Motion over [0, T] is a random variable  that 
depends continuously on t0[0, T] and satisfi es [2]:

B(0) = 0  (2.1)

with probability 1.
For 0 ≤ s < t ≤ T, the random variable given by the 

increment B(t) — B(s) is N(0, t — s). (2.2)
For 0 ≤ s < t < u < v ≤ T, the increments B(v) — B(u) 

and B(t) — B(s) are independent. (2.3)
Some basic properties that are easily attained by the 

defi nition above are:

E[B(t)] = 0, from (2.2) (2.4)

E[B(t)2] = t, from (2.2) and (2.5) (2.5)

Also, for 0 ≤ s < t ≤ T we can write:
E[B(t).B(s)] = E[B(s)2 + B(s)(B(t) — B(s)] = s + 

0.(E[B(t — s)]) = s, that is for any s,t ϵ [0, T] we have that:

E[B(t).B(s)] = min(s, t) = s ∧ t (2.6)

Furthermore, let  > 0 and defi ne C(t) = B(t). Th en 
E[C(t)] = E[B(t)] = E[B(t)] = 0 and E[C(t)]2 = 
E[B(t)2] = 2E[B(t)2] = 2t.

As we are planning to discuss Stochastic Diff erential 
Equations with Brownian Motion, we feel the need to 
also discuss the continuity of the process. To prove 
continuity we refer to the Kolmogorov theorem as in [3]:

Th eorem 1 (Kolmogorov’s Continuity theorem)
Let = { }  a process that for all T > 0 there exist 
, , D > 0 such that[| | ] | | , for 0 , . 
Th en there exists a continuous version of X.

A proof of the theorem can be found in [4]. 

For Brownian Motion, it can be shown [3] that [| | = ( + 2)| | , which by Th eorem 1 
we have that Bt has a continuous version. In fact, from 
now we will be referring to that continuous version of Bt.

As one of the intentions is to investigate numerical 
approximations of Stochastic Diff erential Equations, the 
next natural step is to briefl y discuss integration in terms 
of dBt. Th ough there are multiple approaches in various 
research papers, we are interested in the one shown by 
D.J. Higham in [2] as in it is more suitable for numerical 
approximations. Another side benefi t of the approach 
above is that it provides an interesting connection to 
Classical Riemann calculus. As such, recall the left end-
-point Riemann sum representation of the Riemann 
integral given by ( ) = ( ) , 

where = , (2.7)

or using the midpoint( ) = lim ( )      (2.8)

First we set f(t) B(t). Th erefore we have from (2.7) that[ ] =   
(2.9)

by telescoping series. Th e second term drops off  as it is 
equal to zero. For the third term, we have that:

 

(2.10)

Also, the variance of the third term is of . Th erefore by 
applying limits on both sides of (2.9) we get 

 ( ) ( ) = ( ) , (2.11)

which is the Ito Integral.
By following a similar logic on (2.8) we get

     ( ) ( ) = ( ) ,, (2.12)

which is the Stratonovich Integral.
As explained by Oksendal in [3], even though the 

two integrals look to be diff erent, the choice of which 
one to be used is really a  matter depending on what 
properties the user is interested in. Th e more general and 
usual choice of usually looking into the Ito Integral is 
due to the fact that it is not looking into the future, 
which is a  property we care for in Biology. Also 
Stratonovich is handled better under transformations Fig. 1. Standard Brownian Motion Paths.

=  { ( ) ( ) [] } = { ( ) (0)[ ( )] },

[ ( ) == == =
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and especially on SDEs on manifolds. On the other 
hand, the Ito integrals are martingales, therefore gaining 
a computational advantage. 

As with classical calculus, we could not possibly apply 
the above approach every time we need to calculate 
a  stochastic integral. Th e biggest breakthrough in 
Stochastic Calculus could possibly be due to Kiyoshi Ito.

Lemma 2.1 (Ito’s Lemma)[3]
Let Xt be an Ito process given by 

  = +  (2.13)

Let ( , ) ([0, ) × ). Th en = ( , )  is 
again an Ito process and = ( , ) + ( , ) +  

(2.14)

where ( ) = ( )( )  is computed according to 
the rules = = = 0   

(2.15)and =  

Th e Ito Lemma, or otherwise known as the Ito formula, 
is the equivalent of a  change of variable formula. One 
could fairly easily notice from the structure of the 
formula that it stems from a Taylor series expansion to 
the second partial derivative in terms of the stochastic 
process.

As an example, we would like to confi rm the result 
(2.12), i.e. evaluate . Th erefore we set Xt = Bt 
and ( , ) = . Th en ( , ) =  and by Ito’s 
formula we get= = + + 

(2.16)

which leads to the same answer as (2.12), namely

      =  (2.17)

Preliminaries for fractional Brownian Motion (fBM)

Our investigation will not be limited to the Brownian 
Motion and to SDEs/SPDEs with BM. We are interested 
in extending our results to the fractional Brownian 
motion as well. According to [6], the process has been 
defi ned in 1940 by Kolmogorov in [7] and its properties, 
i.e. self similarity and long term dependence, were 
developed by Mandelbrot and Van Ness in [8]. Another 
important contributor was the British hydrologist Harold 
Edwin Hurst [9]. In his studies on the Nile River, he 

observed through 800 years worth of empirical data, that 
the water levels had a  long term dependency and self 
similarity. To describe that dependency, he estimated 
a parameter, let us call H, based on his data.

Defi nition 2.2 — We defi ne a Gaussian process (BH(t), 
t ≥ 0) with continuous sample paths as a  standard 
fractional Brownian Motion (fBM) with Hurst parameter 
H (0, 1) if it satisfi es:

    [ ( )] = 0  (2.18)[ ( ) ( )] = ( + | | ),  (2.19)

for all , .
By simply looking at expression (2.19), it is obvious 

that we should consider a trichotomy on the value of the 
power in the right hand side, more particularly at the 
value = :

For = , [ ( ) ( )] = min ( , ),  

therefore ( ) is the standard B.M. 
(2.20)

For >   
the increments are positively correlated 

(2.21)

For <   
the increments are negatively correlated 

(2.22)

As we mentioned above, two very important properties 
of fBM are self similarity and long term dependence.

Defi nition 2.3 A process X(t), t ≥ 0) is said to be self 
similar with parameter H if for each a > 0 

     ( ( ), 0) ( ( ), 0)  (2.23)

It is fairly easy to see that for the process (BH(at), t ≥ 0) 
we can write

Th erefore fBM is a self similar process with parameter H 
and

  ( )~| | ( )  (2.24)

Also, regarding long range dependence, let ( ) =  [ (1)( ( + 1) ( )].
Th en for ( , 1)
  ( ) = +  (2.25)

and therefore the process is long range dependent. 

+ ( , )( ) ,

+ ( ) = + ( )= + 12 , =
[( ( ) ( )] = 12 {( ) + ( )| | } = (12){( +| | }]
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Fig. 2. Fractional Brownian Motion Paths with H = 0.7.

Also, we are interested in the following theorem as a tool 
for solving SDEs involving fBM:

Th eorem 2.1 if :  is C2 with derivatives to 
order two, then( ) (0) = ( ) ( ) ++ ( ( ))  a.s. (2.26)

If we let =  then we have the usual Ito formula.

Numerical Approximation and Simulations 
(SDEs)

Th e main scope of our work is to develop tolls and 
methods that can be used to numerically represent 
Brownian Motion paths, fractional Brownian Motion 
paths and SDEs with either BM or fBM. Th e purpose 
of simulating the fi rst two is so that we can use them as 
inputs in the SDEs in both cases of actual explicit 
solutions and numerical approximations. Th e purpose to 
simulate SDEs comes as we can approximate numerically 
their solutions in cases where an explicit solution cannot 
be found. We will start by defi ning our error measurement 
formulas.

Defi nition 3.1 (Error formulas)
Let ( , , … , )  be the actual values of X and ( , , … , ) the numerical approximated values of X 
at time points < < < . Th en =  is the absolute error,    (3.1)

=  is the relative error, and  (3.2)

=  is the average error        (3.3)

We use diff erent forms of error measurements so that 
we are susceptible to misleading results. 

Next we deal with our approach to simulate the diff erent 
processes. Th e basic and common principle is to discretize 
the process as we are using Matlab. Starting with the 
standard Brownian Motion, we use its properties, i.e. the 
fact that it is a Gaussian process whose increments follow 
a normal distribution with mean 0 and variance equal to 
the time-step. Th erefore we use a  build-in random 
number generator that provides us with a N(0, 1) and 
we scale by ,, where Δt is the time-step. For our 
work we considered equidistant partitions, i.e. = , 
where T is the stopping time and N is the number of 
time-steps desired. Also, we usually investigate our 
processes on t  [0, 1] in order to reduce as much 
complexity and cost on the program. As expected, we 
produce diff erent paths of the Brownian Motion even if 
we preserve all the constants (Fig. 1). Th ough the author’s 
original code was successful, the code suggested in [2] 
by Higham is slimmer and very effi  cient. 

We also employ the properties of the fractional 
Brownian motion in order to simulate its paths. Th e 
following steps are needed [10]:

1) Form an N × N matrix A whose entries are given 
by (2.19), i.e the covariance of the process.

2) Evaluate the square root of A using the Cholesky 
decomposition method.

3) Generate a  1 × N vector v whose entries are 
from a standard Gaussian distribution

4) Apply  to v.

A sample of fi ve fBM paths with parameter H = 0.7 can 
be seen in Fig. 2.

As we now have tools to simulate both BM and fBM, 
we proceed to discuss the approximations of SDEs. 
We  start by investigating three methods for Stochastic 
Diff erential Equations involving standard Brownian 
Motion as defi ned in [5]. Th e best performing 
method will be applied to SDEs/SPDEs with fractional 
Brownian Motion. So, the task is to approximate the 
stochastic process = { , }  satisfying the 
SDE:= ( , ) + ( , )  on 
and initial value =  (3.4)

For simplicity purposes we set a(t, Xt)= αXt and b(t, Xt ) 
= Xt. So we get

      = + . (3.5)

Applying the Ito formula to (3.5) we have that

      = exp { + }  (3.6)

We now introduce the three methods for approximating 
SDEs.

Jason Shea, Ioannis Zachariou, Bozenna Pasik-DuncanJason Shea, Ioannis Zachariou, Bozenna Pasik-Duncan



A
pp

lie
d 

M
at

he
m

at
ic

s

7

Defi nition 3.2 (Euler Method)
For t0 < t1 < t2 < ... < tn = T on the interval [t0, T], the 
Euler approximation is a  continuous time stochastic 
process = { , }  satisfying the iterative 
scheme:

      = + ( ) + ( )  (3.7)

More specifi cally in our case that we wish to apply the 
method to (3.6), we get: 

    = + +  (3.8)

Defi nition 3.3 (Heun Method)
For t0 < t1 < t2 < ... < tn = T on the interval [t0, T], the 
Heun method is satisfying the iterative scheme:= + + +

    + + ,  
(3.9)

where

  = + ( ) + ( )  (3.10)

More specifi cally in our case that we wish to apply the 
method to (3.6), we get: = + + +

    + + ,  
(3.11)

where

      = + +  (3.12)

Th e principle behind the Heun method is very much 
alike to the Euler one, with the diff erence that instead of 
the process being evaluated at the endpoints, the 
trapezoid rule is being used.

Defi nition 3.4 (Milstein Method)
For t0 < t1 < t2 < ... < tn = T on the interval [t0, T], the 
Milstein approximation is a continuous time stochastic 
process = { , }  satisfying the iterative 
scheme:

 (3.13)

More specifi cally in our case that we wish to apply the 
method to (3.6), we get: 

 (3.14)

Th e Milstein method is in a sense an “evolutionary” form 
of the Euler method. Th e basic diff erence is that one 
extra term is included in the method. Another important 
remark is that the Ito-Taylor expansion is used in order 

to derive this method, therefore providing an order 1.0 
strong Taylor scheme. Next we compare the three 
methods with the actual solution graphically.

Fig. 3. Simulations for N=1000 and > .

Fig. 4. Simulations for < .

Fig. 5. Simulations for = .

As shown by graphs 3–5 we get the idea that the Heun 
method is not appropriate for SDEs whatsoever. In fact, 
the scheme seems to diverge once BM is involved. 
Th erefore it is completely abandoned for our purposes. 
In comparing the two remaining methods, even though 
both seem to follow the actual solution, the Milstein 
scheme seems to have a much smaller deviation from the 
actual solution (Tables 1–2). Th e result is not surprising 
as both Euler and Milstein can be derived by applying 
the Taylor polynomial expansion to the SDE, with the 

= + ( ) + ( ) ++ ( ) ( )[( ) ]
= + + ++ ( ) ( )[( ) ]

Computational Methods for Stochastic Differential Equations and Stochastic Partial Differential EquationsComputational Methods for Stochastic Differential Equations and Stochastic Partial Differential Equations
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diff erence that the Milstein scheme is of higher order. 
Th e one main concern usually with higher order schemes, 
is the how computationally expensive it can be. Truth is 
though, that even a standard home computer can easily 
run the programs in matter of seconds. As such, we 
further test the Milstein scheme against the actual 
solutions of two more non-linear SDEs, namely:= (1 + ) (1 + ) , (3.15)

that has as an explicit solution

  = cot ( + arccot( )) , (3.16)

Also we test the SDE

   = 1 , (3.17)

whose solution is 

  = cos ( + arccos( )) , (3.18)

Our next step is to extend our results to provide a method 
that works in SDEs with fBM. We also compare 
numerically our method with an N-step method 
suggested by Ian Lewis in [6]. As with the Milstein 
method for SDEs involving Brownian Motion, we apply 
the Taylor polynomial to the general form of SDE with 
fBM. Our result and suggested method is given by:

Table 1. Table of Absolute Errors.

Euler Heun Milstein
4.8317 372.3806 0.6604

12.0207 278.0391 0.9094
26.0531 679.4561 1.9465
10.3954 179.0899 0.5445
13.6615 321.4044 1.0420
15.8134 321.9179 1.2279
9.2588 404.3833 1.0448

22.5554 577.9528 3.8917
40.3136 798.9531 3.4242
13.9642 378.7190 0.7851

Table 2. Table of Relative Errors.

Euler Heun Milstein
3.4319 20.5666 0.6359
6.1103 23.7858 1.1628
1.3683 28.6385 0.8478
1.4295 74.8322 1.5371
2.8765 11.2171 0.4262
1.4639 14.8793 0.6616
3.2527 10.0544 0.4610
5.2890 23.4771 0.5525
4.9824 29.2045 1.6498
5.3197 16.8437 0.6747

Fig. 6–7. Simulations of SDEs using the Milstein Method.

Table 3–4 Errors of SDEs using the Milstein Method.

Trial Average Error
1 0.0009
2 0.0019
3 0.0013
4 0.0002
5 0.0001
6 0.0006
7 0.0004

Trial Average Error
1 0.0238
2 0.0090
3 0.0098
4 0.0201
5 0.0316
6 0.0055
7 0.0060

Jason Shea, Ioannis Zachariou, Bozenna Pasik-DuncanJason Shea, Ioannis Zachariou, Bozenna Pasik-Duncan
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= + ( ) + ( ) B B      (3.19)

One remark for our method is that if we set  we get 
expression (3.13) which is the Milstein method for SDEs 
involving standard Brownian Motion.

Proof: 
Th e Milstein Scheme for standard Brownian motion can 
be produced by adding the term  to the Euler method. 
In similar approach we have= + + ( ) + b(Y )b (Y ) ( , )   (3.20)

Evaluating the last term we have:

( , ) = =  

(3.21)

Substituting back in (3.20) we get= + ( ) + ( ) B B
 

(3.22)

For the numerical simulation, we consider the SDE

  = +  with X0 = 1 (3.23)

Its solution is given by

 = exp { + }  (3.24)

Next we run a  comparison of the extended Milstein 
scheme to the actual solution of the SDE with H = 0.7. 
Th e outcome is very encouraging. 

Fig. 8. SDE with fBM using the extended Milstein Method.

Table 5. Average Errors.

Trial Average Error
1 0.0010
2 0.0037
3 0.0074
4 0.0031
5 0.0014
6 0.0046
7 0.0041

In a head to head comparison with the method suggested 
in [6], we resulted in an absolute error of zero. After 
further investigation it seems that the two schemes are 
in fact the same scheme. Th e main diff erence is that the 
suggested method in this paper is a  much simpler 
expression and not dependent on summations of triple 
integrals. 

Multidimensional SDEs

An extension of these principals which will allow our 
methods a signifi cant increase in capability and depth is 
to examine some numerical simulations of stochastic 
dynamical systems. Broadly speaking, a  dynamical 
system is an n-dimensional system of coupled diff erential 
equations. Th ese systems can exhibit non-linear behavior 
and the numerical study of stochastic variants allows an 
empirical study of the eff ects of small variations on the 
critical points and manifolds of such systems. In order 
to investigate the behavior of these systems, we require 
an updated modeling architecture. 

Consider the previous formulation of an SDE, 
modifi ed such that

 = ( , ) + ( , )  (3.25)

where × , × ×  and W 
is also n-dimensional. Th is formulation (made simpler 
by the choice of nxn diagonal noise wherein each state 
component is perturbed only by the corresponding noise 
component) gives rise to an n-dimensional Milstein 
method approximation [5, 348] with the usual 
assumption that t0 < t1 < t2 < ... < tn = T on the interval 
[t0, T].

Defi nition 3.5 — Multidimensional Milstein Method= + + , + (3.26) 

for the kth component of A and B and nth time step of 
the solution.

We note also, stating without proof (interested parties 
can see [5, 350]) that our expanded multidimensional 
Milstein method also converges with order  = 1, or, 
more accurately stated, 

+ 12 b(Y )b (Y )[ B B (t t )]

= == [ B B (t t )]
+ 12 b(Y )b (Y )[ B B(t t )] 

+ , , ( ) ;   =  

Computational Methods for Stochastic Differential Equations and Stochastic Partial Differential EquationsComputational Methods for Stochastic Differential Equations and Stochastic Partial Differential Equations
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           (3.27)

where the constant C does not depend on k.

Due to the general non-linearity of our system(s) and 
consequently its lack of an explicit reachable solution, 
no measurement of absolute error can be made. We must 
therefore consider a  new architecture for measuring 
the  effi  cacy of our algorithm. An adaptation of the 
approach used by Davie & Gaines in [13], likewise used 
in the SPDE analysis below, is proposed. We generate 
several independent Brownian sheets and discretize each 
using variable numbers of space steps each sharing 
a  common factor. Each discretization will then share 
a number of space points with each other. Summing over 
the squared diff erences of the approximated values, we 
defi ne:

Defi nition 3.6 — Squared Diff erence Convergence 
Formula

  =  ( , , )  (3.28) 

where n is the number of shared points, and m is the 
number of simulated independent Brownian sheets 
for  each ith discretization. In each case, we can 
examine  the  ratios of successive values of Si, ie , 
etc. which should be approximately equal to the order of 
convergence for our method. One advantage of this 
convergence analysis is that it is easily generalizable to 
diff erent time-discretization methods. We therefore 
repeat our analysis to include both

Defi nition 3.7 — Multidimensional Euler Method= + + ,  ;  =   (3.29) 

which converges with a rate of =   (?? — Kloeden & 
Platen — 341).

In order to examine this method, we choose a non-
linear two-dimensional dynamical system, represented in 
the deterministic sense by

          = = (1 ) +  (3.30)

We can gain an intuitive appreciation of the qualities of 
such a  system by studying the phase-plane plot of its 
(deterministic) behavior (plot by MATLAB’s standard 
ode solver ode45 which is based on a well-known fourth-
order Runge-Kutta scheme) presented in fi g. 9.

We note the critical points at x = -1, 0, 1 (unstable, 
saddle, and unstable points, resp.) and the stable and 
unstable manifolds passing through the origin. In order 
to convert this system to an approachable stochastic 
dynamical system, we add simple noise terms to each 
diff erential equation, making:

Fig. 9. System (3.30) with multiple solution curves.

      = += (1 ) + +  (3.31) 

and apply (3.26) using a Milstein discretization with N 
= 100 time steps and a standard Brownian Motion (H = 
1/2). 

Initial results are seen below, plotting fi fty paths 
along the y space dimension [11]:

Fig. 10. Solutions for y in system (3.31) plotted for fi fty 
independent Brownian sheets.

and with a calculated mean path (green) along with 95% 
empirical confi dence intervals (dashed lines) and the 
upper and lower empirical quartiles (dotted lines) 
presented in fi g. 11.

We broadly witness the qualitative behaviors of the 
deterministic model — with the solution circling around 
the cluster of critical points for large times. More detailed 
results along with stochastic phase-plane and error 
analysis as well as consideration of a fractional Brownian 
Motion to be presented in-conference. 

Jason Shea, Ioannis Zachariou, Bozenna Pasik-DuncanJason Shea, Ioannis Zachariou, Bozenna Pasik-Duncan
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Fig. 11. Averaged solution for (3.31) with empirical 
quartiles and 95% CI.

Numerical Approximations 
and Simulations (SPDEs)

Th e majority of Partial Diff erential Equations (PDEs) 
are at the least diffi  cult to solve; many exhibit non-linear 
behavior which makes fi nding analytical solutions 
infeasible. Th e numerical simulation of PDEs, therefore, 
off ers a  route towards the controlled study of the 
behavior of a  class of equations with vast utility in 
industry and science. Th e study and simulation of 
SPDEs is a relatively young and developing fi eld due in 
large part to the challenges involved in crossing the 
diffi  culties of simulating deterministic PDEs (a fi eld in 
itself ) with the complexities of stochastic calculus 
(interested readers are encouraged to see the excellent 
plenary paper [12]). PDEs are similar in structure to 
ODEs but may involve partial derivatives of the state 
variables in addition. We can therefore generalize the 
structure of a stochastic PDE as follows: = [ + ( ) ] + ( )   (4.1)

where , f & g are N-dimensional functions, and 
A  is an N-dimensional operator (typically involving 
partial derivatives of the state variables). Approaches to 
numerical approximation schemes for SPDEs run 
roughly parallel to those of SODEs, however an 
important distinction is that an Ito formula, as discussed 
above (Lem2.1) is not available. We will here restrict 
ourselves to consideration of SPDEs of the parabolic 
type with a single space variable, producing the SPDE=  +  ( ) +  ( ) ( , )  (4.2)

For convenience, we assume Dirichlet boundary 
conditions and set our space variable to vary over the 
closed unit interval.

  ( , 0) = ( , 1) = 0 ;  [0,1]  (4.3)

To construct a  numerical algorithm with which to 
approximate the solution, Ut, we make use of a common 
technique from the study of PDEs and replace the space 
derivatives of U and W with their fi nite diff erences over 
some small space-step. Th e result is the system of Stochastic 
Ordinary Diff erential Equations seen below [15], =  , 2 , +

(4.4)

Considering the above system, we are now free to apply 
and examine a  variety of time-discretization schemes 
[13]. Using the explicit Euler scheme, we arrive at:

Defi nition 4.1 — Explicit Euler SPDE scheme

, = , + ( , + ,     
(4.5)

 

which has been found [14] to converge at a rate of . For 
certain applications, however, implicit schemes are 
preferred and so we generate the following:

Defi nition 4.2 — Crank-Nicholson SPDE scheme

, = , + , , , + 

(4.6) 

Defi nition 4.3 — Backward Euler SPDE scheme

 , = , + ( , +  
(4.7) 

which are each known to converge at a rate of f =  2 
[14].

For part of our evaluation of numerical methods, we 
will concentrate on the simple but canonical one-
dimensional stochastic heat equation

      ) =   + ( , , ) ( , )  (4.8)  

We therefore assume the operator A  in the above 
formulation (4.1) to be the one-dimensional Laplacian 
and set f = 0. We assume an arbitrary region of 0 ≤ x ≤ 1 
with periodic boundary conditions u(0, t) = u(1, t) and 
initial condition u(x, 0) = sin(πx). Again, to fi rst attain 
a  qualitative view of our problem, we consider the 
deterministic system, or equivalently, the case where  0:

Here we see the familiar eff ects of the heat equation- 
with the heat dissipating to a  fl at curve over time. 
Farther, we can begin to observe qualitative stochastic 
eff ects by using simple forms for 

+ , + , , , +, , , ( , , )

2 , )  +  ( , ) ,

+ , , , + ,

+ , 2 , )  +  ,
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Fig. 12. The deterministic heat equation with T = 100.

Fig. 13. The stochastic heat equation with σ = .2.

And the signifi cantly more extreme eff ects when  is 
increased

Fig. 14. The stochastic heat equation with .

We again witness the qualitative behaviors of the 
deterministic model- with the smoothing eff ects partially 
negated by the white noise in the system. More detailed 
results along with noisy initial and boundary conditions, 
implicit scheme implementation, and convergence order 
analysis (using the method outlined in (3.28) as well as 
consideration of fractional Brownian Motion cases to be 
presented in-conference. 

Conclusions

We believe that our methods for simulating Brownian 
Motion and fractional Brownian Motion are strong due 
to the fact that they are derived directly from the 
properties of the processes. Regarding SDEs with 
Brownian Motion, we reject the Heun method and 
choose to either use either Euler or Milstein method. Th e 
Milstein method is somewhat closer to the exact solution, 
but the Euler method might be more appropriate for fi ner 
partitions on t. Finally we suggest that for SDEs involving 
fBM, the extended Milstein method should be used. 
Conclusions for multidimensional SDEs and SPDEs are 
reserved for the presentation of expanded data.
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