PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence results and stabilization of homogeneous conformable fractional order systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we give results on the stability of homogeneous conformable fractional order systems using assumptions on a family of compact sets and provide the stabilization of an affine control system and given an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists and satisfying a homogeneous condition and we present existence and uniqueness theorems for sequential linear conformable fractional differential equations.
Rocznik
Strony
641--661
Opis fizyczny
Bibliogr. 26 poz., rys., wzory
Twórcy
autor
  • Sfax University, Faculty of Sciences of Sfax, Department of Mathematics, road Soukra, 3038 Sfax, Tunisia
  • Sfax University, Faculty of Sciences of Sfax, Department of Mathematics, road Soukra, 3038 Sfax, Tunisia
  • Sfax University, Faculty of Sciences of Sfax, Department of Mathematics, road Soukra, 3038 Sfax, Tunisia
Bibliografia
  • [1] V. Adriano: Global feedback stabilization of the angular velocity of a symmetric rigid body. Systems and Control Letters, 20 (1993), 361-364. DOI: 10.1016/0167-6911(93)90014-W
  • [2] T. Abdeljawad: On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279(1), (2015), 57-66. DOI: 10.1016/j.cam.2014.10.016
  • [3] A. Gokdogana, E. Unalb, and E. Celikc: Existence and uniqueness theorems for sequential linear conformable fractional differential equations. arXiv, (2015), 1504.02016. DOI: 10.48550/arXiv.1504.02016
  • [4] I. Podlubny: Fractional Differential Equations. Mathematics in Science and Engineering Series, 198 Academic Press, 1999.
  • [5] A. Atangana, D. Baleanu and A. Alsaedi: New properties of conformable derivative. Open Mathematics, 13(1), (2015). DOI: 10.1515/math-2015-0081
  • [6] B. Bendouma, A. Cabada and A. Hammoudi: Existence results for systems of conformable fractional differential equations. Archivum Mathematicum, 55(2), (2019), 69-82. DOI: 10.5817/AM2019-2-69
  • [7] R. Chabour, O. Chabour and H. Zenati: Stabilisation des systèmes bilinéaires homogènes. Comptes Rendus de l’Académie des Sciences - Series I - Mathematics, 326(5), (1998), 633-636, (in French). DOI: 10.1016/S0764-4442(98)85021-0
  • [8] O. Chabour, R. Chabour, H. Zenati and G. Sallet: Stabilizability of homogeneous polynomial systems. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, USA, 4 (1998), 4098-4099.
  • [9] T. Fajraoui, B. Ghanmi, F. Mabrouk and F. Omri: Mittag-Leffler stability analysis of a class of homogeneous fractional systems. Archives of Control Sciences, 31(2), (2021), 401-415. DOI: 10.24425/acs.2021.137424
  • [10] F. Mabrouk: Homogeneity-based exponential stability analysis for conformable fractional-order systems. Ukrainskyi Matematychnyi Zhurnal, 75(10), (2023), 1402-1410. DOI: 10.3842/umzh.v75i10.7280
  • [11] H. Hermes: Nilpotent and high-order approximations of vector field systems. SIAM Review, 33(2), (1991), 238-264. DOI: 10.1137/1033050
  • [12] C. Huanga , F. Wang and Z. Zheng: Exponential stability for nonlinear fractional order sampled-data control systems with its applications. Chaos, Solitons and Fractals, 151 (2021). DOI: 10.1016/j.chaos.2021.111265
  • [13] H. Jerbi: A manifold-like characterization of asymptotic stabilizability of homogeneous systems. Systems Control Letters, 45(3), (2002), 173-178. DOI: 10.1016/S0167-6911(01)00172-4
  • [14] C. Jammazi, M. Boutayeb and G. Bouamaied: On the global polynomial stabilization and observation with optimal decay rate. Chaos Solitons and Fractals, 153, (2021). DOI: 10.1016/j.chaos.2021.111447
  • [15] H. Jerbi, T. Kharrat and W. Kallel: Some results on stability and stabilization of homogeneous time-varying systems. Mediterranean Journal of Mathematics, 10 (2013), 177-188. DOI: 10.1007/s00009-012-0203-7
  • [16] H. Jerbi, T. Kharrat and F. Mabrouk: Stabilization of polynomial systems in 𝑅3 via homogeneous feedback. Journal of Applied Analysis, 28(2), (2022), 189-197. DOI: 10.1515/jaa-2021-2080
  • [17] T. Kharrat: Stability of homogeneous non-linear systems. IMA Journal of Mathematical Control and Information, 34(2), (2017), 451-461. DOI: 10.1093/imamci/dnv050
  • [18] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh: A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264 (2014) 65-70. DOI: 10.1016/j.cam.2014.01.002
  • [19] E. Moulay: Stabilization via homogeneous feedback controls. Automatica, 44(11), (2008), 2981-2984. DOI: 10.1016/j.automatica.2008.05.003
  • [20] N. Nakamura, H. Nakamura, Y. Yamashita and H. Nishitani: Homogeneous stabilization for input affine homogeneous systems. IEEE Transactions on Automatic Control, 54(9), (2009), 2271-2275. DOI: 10.1109/TAC.2009.2026865
  • [21] P.M. Guzman, L.M. Lugo Motta Bittencurt and J.E. Nápoles Valdes: On the stability of solutions of fractional non conformable differential equations. Studia Universitatis Babeş-Bolyai Mathematica, 65(4), (2020), 495-502. DOI: 10.24193/subbmath.2020.4.02
  • [22] J-P. Demailly: Analyse Numerique et Equations Differentielles. Grenoble Sciences, 2016, (in French).
  • [23] H. Rezazadeh, H. Aminikhah and A.H. Refahi Sheikhani: Stability analysis of conformable fractional systems. Iranian Journal of Numerical Analysis and Optimization, 7(1), (2017), 13-32. DOI: 10.22067/ijnao.v7i1.46917
  • [24] L. Rosier: Homogeneous Lyapunov function for homogeneous continuous vector field. Systems and Control Letters, 19(6), (1992), 467-473. DOI: 10.1016/0167-6911(92)90078-7
  • [25] L.P. Rothschild and E.M. Stein: Hypoelliptic differential operators and nilpotent groups. Acta Mathematica, 137 (1976), 247-320.
  • [26] A. Souahi, A. Ben Makhlouf and M.A. Hammami: Stability analysis of conformable fractional-order nonlinear systems. Indagationes Mathematicae, 28(2017), 1265-1274. DOI: 10.1016/j.indag.2017.09.009
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3677f724-adbb-42f4-9d08-82aed62e62e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.