PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Top PV market solar cells 2016

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Photovoltaic (PV) technologies which play a role in PV market are divided into basic two types: wafer-based (1st generation PV) and thin-film cell (2nd generation PV). To the first category belong mainly crystalline silicon (c-Si) cells (both mono- and multi-crystalline). In 2015 around 90% of the solar market belonged to crystalline silicon. To the 2nd generation solar cells belongs thin film amorphous silicon (a- Si) or a combination of amorphous and microcrystalline silicon (a-Si/µc-Si), compound semiconductor cadmium telluride (CdTe), compound semiconductor made of copper, indium, gallium and selenium (CIS or CIGS) and III–V materials. The PV market for thin film technology is dominated by CdTe and CIGS solar cells. Thin film solar cells’ share for all thin film technologies was only 10% in 2015. New emerging technologies, called 3rd generation solar cells, remain the subject of extensive R&D studies but have not been used in the PV market, so far. In this review the best laboratory 1st and 2nd generation solar cells that were recently achieved are described. The scheme of the layer structure and energy band diagrams will be analyzed in order to explain the boost of their efficiency with reference to the earlier standard designs.
Rocznik
Strony
55--64
Opis fizyczny
Bibliogr. 63 poz., il., rys., wykr.
Twórcy
  • Division of Quantum Technologies, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] http://www.greentechmedia.com/articles/read/gtm-research-global-solar-pv-installations-grew-34-in-2015.
  • [2] http://resources.solarbusinesshub.com/solar-industry-reports/item/global-market-outlook-for-solar-power-2015-2019.
  • [3] http://www.pv-magazine.com/investors/module-price-index/.
  • [4] https://www.ise.fraunhofer.de/de/downloads/pdf-files/aktuelles/photovoltaics-report-in-englischer-sprache.pdf.
  • [5] M. A. Green, K. Emery, Y. Hishikava, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 48), Prog. Photovol. Res. Appl. 24 (2016) 905-913.
  • [6] http://www.itrpv.net/Reports/Downloads/2016/.
  • [7] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 39), Prog. Photovol. Res. Appl. 20 (2012) 12-20.
  • [8] W. Shockley, H. J. Queisser, Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32 (1961) 510-519.
  • [9] https://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser.limit.
  • [10] J. H. Zhao, A. H. Wang, M. A. Green, 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Prog. Photovol. 7 (1999) 471-474.
  • [11] M. A. Green, The path to 25% silicon solar cell efficiency: history of silicon cell evolution, Prog. Photovol. 17 (2009) 183-189.
  • [12] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, S. Okamoto, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovol. 4 (2014) 1433-1435.
  • [13] D. D. Smith, P. Cousins, S. Westberg, R. De Jesus-Tabajonda, G. Aniero, Y.-C. Shen, Towards the practical limits of silicon solar cells, IEEE J. Photovol. 6 (2014) 1465-1469.
  • [14] R. M. Swanson, Approaching the 29% limit efficiency of silicon solar cells, in: Proc. 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 2005, pp. 889-894.
  • [15] A. Richter, M. Hermle, S. W. Glunz, Reassessment of the limiting efficiency for crystalline silicon solar cells, IEEE J. Photovol. 3 (2013) 1184-1191.
  • [16] S. Zhang, X. Pan, H. Jiao, W. Deng, J. Xu, Y. Chen, P.P. Altermatt, Z. Feng, P. J. Verlinden, 335 watt world record p-type mono-crystalline module with 20.6% efficient PERC solar cells, IEEE J. Photovol. 6 (2016) 145-152.
  • [17] R. Swanson, The role of modeling in Sun Power’s commercialization efforts, in: Presented at Challenges in PVscience, Technology, and Manufacturing: A workshop on the Role of Theory, Modeling and Simulation, Purdue University, August 2-3, 2012.
  • [18] D. Macdonald, L. J. Geerligs, Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon, Appl. Phys. Lett. 85 (2004) 4061-4063.
  • [19] http://www.trinasolar.com/ap/about-us/newinfo 1076.html.
  • [20] Thin Film Solar Cells: Fabrication, Characterization and Applications, in: J. Poortmans, V. Arkhipov (Eds.), John Wiley & Sons, Inc, Hoboken, NJ, USA, 2006.
  • [21] T. F. Schulze, L. Korte, F. Ruske, B. Rech: Band lineup in amorphous/crystalline silicon heterojunctions and the impact of hydrogen microstructure and topological disorder, Phys. Rev. B 83 (2011), 165314-1-165314-11.
  • [22] S. Xiao, S. Xu, High-efficiency silicon solar, cells-materials and devices physics, Crit. Rev. Solid State Mater. Sci. 39 (2014) 277-317.
  • [23] O. D. Miller, E. Yablonovitch, S. R. Kurtz, Intense internal and external fluorescence as solar cells approach the Shockley-Queisser efficiency limit, IEEE J. Photovol. 2 (2012) 303-311.
  • [24] B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, G. S. Higashi, 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in: Proceedings of the 37th IEEE Photovoltaic Specialists Conference, IEEE, 2011, pp. 000004-000008.
  • [25] T. Matsui, H. Sai, T. Suezaki, M. Matsumoto, K. Saito, I. Yoshida, M. Kondo, Development of highly stable and efficient amorphous silicon based solar cells, Proc. 28th European Photovoltaic Solar Energy Conference (2013) 2213-2217.
  • [26] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge University Press, UK, 1991.
  • [27] PV Magazine, 15th June 2016.
  • [28] http://www.hanergyapac.com/en/media-center/press-release/100-news-006.
  • [29] M. Contreras, L. Mansfield, B. Egaas, J. Li, M. Romero, R. Noufi, E. Rudiger-Voigt, W. Mannstadt, 37th IEEE Photovoltaic Specialists Conference (PVSC), 2011, pp. 000026-000031.
  • [30] R. Scheer, H. W. Schock, Chalcogenide Photovoltaics, Wiley-VCh Verlag, Weinheim, Germany, 2011 (Chapter 2).
  • [31] M. Ruckh, D. Schmid, H. W. Schock, Photoemission study of the ZnO/CdS interface, J. Appl. Phys. 76 (1994) 5945-5948.
  • [32] M. D. Archer, M. A. Green, Clean Electricity from Photovoltaics, Imperial College Press, 2015.
  • [33] A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy, J. Phys.: Condens. Matter 27 (2015) 134201-134225
  • [34] J. Hedström, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh, H. W. Schock, ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, Proceedings of 23rd IEEE Photovoltaic Specialists Conference(1993) 364-371.
  • [35] F. Pianezzi, P. Reinhard, A. Chirilã, B. Bissig, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells, Phys. Chem. Chem. Phys. 16 (2014) 8843-8851.
  • [36] A. Chirilã, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A. N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat. Mater. 12 (2013)1107-1111.
  • [37] G. Larramona, S. Levcenko, S. Bourdais, A. Jacob, C. Choné, B. Delatouche, C. Moisan, T. Unold, G. Dennler, Fine-tuning the Sn content in CZTSSe thin films to achieve 10.8% solar cell efficiency from spray deposited water–ethanol-based colloidal inks, Adv. Energy Mater. 4 (2015)1501404-1501414.
  • [38] K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J.A. Stride, M. Green, X. Hao, Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1−xCdxS buffer layer, Adv. Energy Mater. 6 (2016) 1600046-1600052.
  • [39] http://www.greentechmedia.com/articles/read/First-Solar-Hits-Record-22.1-Conversion-Efficiency-For-CdTe-Solar-Cell.
  • [40] J. M. Burst, J. N. Duenow, D. S. Albin, E. Colegrove, M. O. Reese, J. A. Aguiar, C.-S. Jiang, M. M. Al-Jassim, D. Kuciauskas, W. K. Metzger, M. K. Patel, S. Swain, T. Ablekim, K. G. Lynn, CdTe solar cells with open-circuit voltage breaking the 1 V barrier, Nature Energy 1 (2016), 16015.
  • [41] J. H. Ermer, R. K. Jones, P. Hebert, P. Pien, R. R. King, D. Bhusari, R. Brandt, O. Al-Taher, C. Fetzer, G. S. Kinsey, N. Karam, Status of C3MJ+ and C4MJ production concentrator solar cells at spectrolab, IEEE J. Photovol. 2 (2012) 209-213.
  • [42] P. T. Chiu, D. C. Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, N. H. Karam, 35.8% space and 38.8% terrestrial 5 J direct bonded cells, in: Proc. 40th IEEE Photovoltaic Specialist Conference, Denver, 2014, pp. 11-13.
  • [43] Y. Huang, H. Yang, Design of InP-based metamorphic high efficiency five-junction solar cells for concentrated photovoltaics, Semicond. Sci. Technol. 30 (2015) 105031-105038.
  • [44] S. Essig, M. A. Steiner, C. Allebe, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, D. L. Young, Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency, IEEE J. Photovol. 6 (2016) 1012-1019.
  • [45] M. Jacoby, The future of low-cost solar cells, Chem. Eng. News 94 (2016) 30-35.
  • [46] H. Lu, X. Xu, Z. Bo, Perspective of a new trend in organic photovoltaic: ternary blend polymer solar cells, Sci. China Mater. 59 (2016) 444-458.
  • [47] M.-E. Ragoussia, T. Torres, New generation solar cells: concepts, trends and perspectives, Chem. Commun. 51 (2015) 3957-3972.
  • [48] W.-Y. Rho, H. Jeon, H.-S. Kim, W.-J. Chung, J. S. Suh, B.-H. Jun, Recent progress in dye-sensitized solar cells for improving efficiency: TiO2 nanotube arrays inactive layer 2, J. Nanomater. 2015 (2015) 1-17.
  • [49] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 110 (2010) 6595-6663.
  • [50] J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%, J. Am. Chem. Soc. 138 (2016) 4201-4209.
  • [51] Z. Zheng, H. Ji, P. Yu, Z. Wang, Recent progress towards quantum dot solar cells with enhanced optical absorption, Nanoscale Res. Lett. 11 (2016) 266-273.
  • [52] J. Wu, S. Chen, A. Seeds, H. Liu, Quantum dot optoelectronic devices: lasers, photodetectors and solar cells, J. Phys. D 48 (2015) 363001-363026.
  • [53] I. Ramiro, A. Marti, E. Antolin, A. Luque, Review of experimental results related to the operation of intermediate band solar cells, IEEE J. Photovol. 4 (2014) 736-748.
  • [54] J. Seo, J. H. Noh, S. I. Seok, Rational strategies for efficient perovskite solar cells, Acc. Chem. Res. 49 (2016) 562-572.
  • [55] Science News, Newcomer juices up the race to harness sunlight, Science 342 (2013) 1438-1439.
  • [56] Nature News Features, Henry Snaith: Sun worshipper, Nature 504 (2013) 357-365.
  • [57] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (2015) 1234-1237
  • [58] N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Mater. Today 18 (2015) 66-72
  • [59] P. P. Boix, K. Nonomura, N. Mathews, S. G. Mhaisalkar, Current progress and future perspectives for organic/inorganic perovskite solar cells, Mater. Today 17 (2014) 16-23.
  • [60] P. Mandal n, S. Sharma, Progress in plasmonic solar cell efficiency improvement: a status review, Renew. Sustain. Energy Rev. 65 (2016)537-552.
  • [61] W. R. Erwin, H. F. Zarick, E. M. Talbert, R. Bardhan, Light trapping in mesoporous solar cells with plasmonic nanostructures, Energy Environ. Sci. 9 (2016) 1577-1601.
  • [62] S. K. Cushing, N. Wu, Progress and perspectives of plasmon-enhanced solar energy conversion, J. Phys. Chem. Lett. 7 (2016) 666-675.
  • [63] M. L. Brongersma, Introductory lecture: nanoplasmonics, Faraday Discuss 178 (2015) 9-36.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-367220a7-af6e-4898-9829-e30a6c695224
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.