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Abstract. Criteria in order that a Musielak-Orlicz function space LΦ as well as
Musielak-Orlicz sequence space lΦ contains an asymptotically isometric copy of c0 are given.
These results extend some results of [Y.A. Cui, H. Hudzik, G. Lewicki, Order asymptotically
isometric copies of c0 in the subspaces of order continuous elements in Orlicz spaces, Journal
of Convex Analysis 21 (2014)] to Musielak-Orlicz spaces.
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1. INTRODUCTION

Let R, R+ and N stand for the sets of reals, nonnegative reals and natural numbers,
respectively. Let (T,Σ, µ) be an arbitrary σ-finite and complete measure space that
does not reduce to a finite number of atoms only. A mapping Φ : T ×R→ [0,+∞] is
said to be a Musielak-Orlicz function if:

1. There is a null set T0 ∈ Σ such that Φ(t, ·) is an Orlicz function for any t ∈ T \T0,
that is, Φ(t, ·) is convex, even, vanishing at zero, left continuous on R+ and not
identically equal to zero.

2. For any u ∈ R, the function Φ(·, u) is Σ-measurable.

Let L0 = L0(T,Σ, µ) denote the space of all (equivalence classes of) Σ-measurable
real functions defined on T . Given any Musielak-Orlicz function Φ, we define on L0

a convex modular IΦ by the formula

IΦ(x) =

∫
T

Φ(t, x(t))dµ.
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The Musielak-Orlicz space LΦ generated by a Musielak-Orlicz function Φ is defined
by the formula

LΦ = {x ∈ L0 : IΦ(λx) <∞ for some λ > 0}.

We will considered this space under the Luxemburg norm (see [2, 9–12]):

‖x‖Φ = inf{λ > 0 : IΦ(x/λ) ≤ 1}

Let Ω denote the nonatomic part of T and N denote the purely atomic part of T .
Then the measure space (T,Σ, µ) can be written as the direct sum

(Ω,Σ ∩ Ω, µ/Ω)⊕ (N , 2N , µ/2N ).

In this paper we will consider two separate cases: µ nonatomic and µ purely atomic
with N = N.

In a nonatomic case we say that Φ satisfies the growth condition 42 (Φ ∈ 42

for short) if there exist a null set B ∈ Σ ∩ Ω, a constant K > 0 and a nonnegative
Σ-measurable function h on Ω such that

∫
Ω

Φ(t, h(t))dµ <∞ and Φ(t, 2u) ≤ KΦ(t, u)
for all t ∈ Ω \B and u ≥ h(t) (see [2] and [11]).

In the purely atomic case we assume that (T,Σ, µ) = (N, 2N, card) and we will
write Φn(u), lΦ and xn in place of Φ(n, u), LΦ and x(n), respectively. Then lΦ is
called the Musielak-Orlicz sequence space.

We say that Φ ∈ δ0
2 if there are K > 0, a > 0 and a sequence (cn)∞n=1 in [0,+∞]

such that
∑∞
n=m cn <∞ for some m ∈ N and the inequality

Φn(2u) ≤ KΦn(u) + cn

holds for all n ∈ N and u ∈ R satisfying Φn(u) ≤ a (see [11]).
Recall that if X is a Banach function lattice and x ∈ X, then x is said to be

order continuous if ‖xn‖ → 0 for any sequence (xn) in X such that 0 ≤ xn ≤ |x| and
xn → 0 µ-a.e. The subspace of all order continuous elements in X is denoted by Xa.
It is possible that Xa = {0}. This is the case when X is equal to L∞ or L1 ∩ L∞ for
example. If the measure space (T,Σ, µ) is purely atomic, then (LΦ)a 6= {0} for any
Musielak-Orlicz function Φ. However, if the measure space (T,Σ, µ) is nonatomic,
we have (LΦ)a 6= {0} if and only if the set {t ∈ T : Φ(t, ·) is finitely valued} has
a positive measure, actually supp(LΦ)a = {t ∈ T : Φ(t, ·) is finitely valued} in this
case. Consequently, if Φ does not depend on the parameter t and the measure µ is
nonatomic, then (LΦ)a 6= {0} if and only if Φ is finitely valued (this is of course the
case for Orlicz spaces).

A Banach function lattice X is said to be order continuous (X ∈ OC for short)
if Xa = X. It is well known that order continuity of a Banach function lattice X as
well as of an element x ∈ X is preserved if we change a norm ‖ · ‖ in X into another
one ||| · ||| which is equivalent to ‖ · ‖. It is also well known that (LΦ)a = EΦ, where
EΦ = {x ∈ L0 : IΦ(λx) < ∞ for any λ > 0}, when the measure space is nonatomic
and that in the purely atomic case, we have (lΦ)a = hΦ, where

hΦ =
{
x = (xn)∞n=1 : ∀λ>0∃nλ∈N

∞∑
n=nλ

Φn(λxn) <∞
}
.
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It is also known that hΦ is the closure (in the norm topology in lΦ) of the space of
all real sequences x = (xn) with a finite number of coordinates different from zero.
Moreover (see [2] and [11]), for a nonatomic measure, we have LΦ = EΦ if and only
if Φ ∈ 42 and for the purely atomic measure the equality lΦ = hΦ holds if and only
if Φ ∈ δ0

2 .
We say that a Banach space (X, ‖ · ‖) contains asymptotically isometric copy of

c0 if there exists a sequence (εn) of numbers in (0, 1) such that lim
n→∞

εn = 0 and there
exists a linear operator P : c0 → X such that

sup
n

(1− εn)|xn| ≤ ‖Px‖ ≤ sup
n
|xn|

for every element x = (xn) of c0.
The notion of asymptotically isometric copy of c0 was introduced in [6], where it

is shown that if a Banach space X contains such a copy, then X fails the fixed-point
property for nonexpansive self-mappings on closed bounded convex subsets of X.

2. RESULTS

Theorem 2.1. hΦ equipped with the Luxemburg norm contains an asymptotically
isometric copy of c0 if and only if Φ does not satisfy the δ0

2 condition.

Proof. Let Φ 6∈ δ0
2 and for ε > 0, k ∈ N, i ∈ N define the numbers

dki = sup{Φi((1 +
1

k
)x) : Φi(x) ≤ 1

2k+1
and Φi((1 + ε)x) ≥ 2k+1Φi(x)}.

It is known (see [1, 4, 7, 8]) that

∞∑
i=1

dki =∞ for every k ∈ N.

Define i1 as the largest natural number such that

i1∑
i=1

d1
i ≤ 1,

whenever d1
1 ≤ 1 and i1 = 0 otherwise. Then

i1+1∑
i=1

d1
i > 1.

Put N1 = {1, 2, . . . , i1 + 1}. Next define i2 as the largest natural number such that

i2∑
i=i1+2

d2
i ≤ 1,
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if d2
i1+2 ≤ 1 and i2 = i1 + 2 otherwise. Then

i2+1∑
i=i1+2

d2
i > 1.

Put N2 = {i1 + 2, . . . , i2 + 1}. By induction we can construct the sets

Nk = {ik−1 + 2, . . . , ik, ik + 1} (k ∈ N, i0 = −1)

such that ∑
i∈Nk\{ik+1}

dki ≤ 1 and
∑
i∈Nk

dki > 1.

For every k ∈ N and i ∈ Nk there exist such numbers xi that∑
i∈Nk

Φi((1 +
1

k
)xi) > 1, Φi(xi) ≤

1

2k+1
and Φi((1 +

1

k
)xi) ≥ 2k+1Φi(xi).

Hence ∑
i∈Nk

Φi(xi) ≤
∑

i∈Nk\{ik+1}

1
2k+1 Φi((1 + 1

k )xi) + 1
2k+1 ≤

≤ 1
2k+1

∑
i∈Nk\{ik+1}

dki + 1
2k+1 ≤ 1

2k
.

Define yk =
∑
i∈Nk xiei for k ∈ N. Then

IΦ(yk) =
∑
i∈Nk

Φi(xi) ≤ 1
2k
,

IΦ((1 + 1
k )yk) =

∑
i∈Nk

Φ((1 + 1
k )xi) > 1.

for any k ∈ N. Now define an operator P : c0 → hΦ by the formula

Pu =

∞∑
k=1

ukyk for u = (uk) ∈ c0.

We will show that P is well defined, i.e. Pu ∈ hΦ for any u ∈ c0. Take any λ > 0
and l ∈ N such that λ|uk| ≤ 1 for every k ≥ l. Then

IΦ(λ · Pu · χNl∪Nl+1∪...) = IΦ(λ

∞∑
k=l

ukyk) =

∞∑
k=l

IΦ(λukyk) ≤

≤
∞∑
k=l

IΦ(yk) ≤
∞∑
k=l

1
2k
<∞.
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Consequently, Pu ∈ hΦ.
Next we will show that ‖Pu‖ ≤ ‖u‖∞. For any nonzero u ∈ c0 we have

IΦ

(
Pu
‖u‖∞

)
= IΦ

(
1

‖u‖∞

∞∑
k=1

ukyk

)
≤
∞∑
k=1

IΦ

(
1

‖u‖∞ukyk

)
≤

≤
∞∑
k=1

IΦ (yk) ≤
∞∑
k=1

1
2k

= 1.

Consequently, ‖Pu‖ ≤ ‖u‖∞.
Finally, we will show that there exists a sequence (εn) such that

εn ↓ 0 and sup
n

(1− εn)|un| ≤ ‖Pu‖.

Define for every k ∈ N the number εk = 1
k+1 . Observe that 1

1−εk = 1 + 1
k . Take any

λ > 1. For every nonzero u = (uk) ∈ c0 there exists m ∈ N such that

(1− εm)λ|um|
supn(1− εn)|un|

≥ 1,

equivalently
λ|um|

supn(1− εn)|un|
≥ 1

1−εm .

Then we have

IΦ

(
λPu

supn(1−εn)|un|

)
= IΦ

( ∑∞
k=1 λukyk

supn(1−εn)|un|

)
≥ IΦ

(
λumym

supn(1−εn)|un|

)
≥

≥ IΦ
(

1
1−εm ym

)
= IΦ

(
1

1−εm

∑
i∈Nm

xiei

)
=

=
∑
i∈Nm

Φi
((

1 + 1
m

)
xi
)
> 1,

whence
1
λ sup

n
(1− εn)|un| ≤ ‖Pu‖

and from arbitrariness of λ > 1, we get the thesis.
Now assume that Φ ∈ δ0

2 . Then hΦ = lΦ is the dual space of hΨ, where Ψ is the
Orlicz function complementary in the sense of Young to Φ. Assume that hΦ contains
an asymptotically isometric copy of c0. Then it contains, as a dual space, an isometric
copy of l∞ (see [5]). But this contradicts the fact that hΦ is order continuous.

Theorem 2.2. If Φ takes only finite values then: EΦ contains an asymptotically
isometric copy of c0 if and only if Φ does not satisfy the ∆2 condition.
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Proof. If Φ <∞ and Φ 6∈ ∆0
2 then there exist sequences of measurable functions (xn)

and measurable sets (En) such that:

Em ∩ En = ∅ for m 6= n,

xn(t) <∞ for every t ∈ En, n ∈ N,∫
En

Φ(t, xn(t))dµ =
1

2n
,

Φ(t, (1 + 1
n )xn(t)) ≥ 2n+2Φ(t, xn(t)) for every t ∈ En, n ∈ N.

For details see [2].
Take any n ∈ N and define for every k ∈ N the set

En,k = {t ∈ En : |xn(t)| ≤ k} ∩ Tk,

where (Tk) is a sequence of measurable sets satisfying: T1 ⊂ T2 ⊂ . . .,
⋃
T∞n=1 = T

and µ(Tk) < ∞ for every k ∈ N. Such sets exist by the assumption of σ-finiteness of
the measure µ. Then, we have

En,1 ⊂ En,2 ⊂ . . . ,
∞⋃
k=1

En,k = En,

µ(En,k) <∞ for every k ∈ N.

Consequently, we get that |xn|χEn,k ↑ |xn|χEn as k →∞. By the Beppo Levi mono-
tone convergence theorem, we get

lim
k→∞

∫
En

Φ(t, xn(t)χEn,k(t))dµ =

∫
En

Φ(t, xn(t))dµ.

Now, for every n ∈ N we can fix k ∈ N such that

1
2n+1 ≤

∫
En

Φ(t, xn(t)χEn,k(t))dµ =

∫
En,k

Φ(t, xn(t))dµ ≤
∫
En

Φ(t, xn(t))dµ = 1
2n .

Let us denote En,k by Fk.
Summarizing, for now we have constructed a sequence of measurable functions

(xn) and a sequence of measurable sets (Fn) satisfying the following conditions:

Fm ∩ Fn = ∅ for m 6= n,

xn is bounded on Fn, n ∈ N,

1
2n+1 ≤

∫
Fn

Φ(t, xn(t))dµ ≤ 1
2n ,

Φ(t, (1 + 1
n )xn(t)) ≥ 2n+2Φ(t, xn(t)) for every t ∈ Fn, n ∈ N.
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Define an operator P : c0 → EΦ by the formula

Pu =

∞∑
n=1

unxnχFn for u = (un) ∈ c0.

We will show that IΦ(λPu) <∞ for any u ∈ c0 and λ > 0. Fix any u = (un) ∈ c0 and
take any λ > 0. There exists l0 ∈ N such that λ|un| ≤ 1 for every n ≥ l0. We have

IΦ(λPu) =

∫
T

Φ

(
t, λ

∞∑
n=1

unxn(t)χFn(t)

)
=

∞∑
n=1

∫
Fn

Φ(t, λunxn(t))dµ =

=

l0−1∑
n=1

∫
Fn

Φ(t, λunxn(t))dµ+

∞∑
n=l0

∫
Fn

Φ(t, xn(t))dµ ≤

≤
l0−1∑
n=1

∫
Fn

Φ(t, λunxn(t))dµ+

∞∑
n=l0

1
2n <∞,

since
∫
Fn

Φ(t, λunxn(t))dµ is finite for every n ∈ N. Consequently, Pu ∈ EΦ.
Next we will show that ‖Pu‖ ≤ ‖u‖∞. For any nonzero u ∈ c0 we have

IΦ

(
Pu
‖u‖∞

)
=

∫
T

Φ

(
t,

∞∑
n=1

1
‖u‖∞unxn(t)χFn(t)

)
dµ ≤

≤
∫
T

Φ

(
t,

∞∑
n=1

xn(t)χFn(t)

)
dµ =

∞∑
n=1

∫
Fn

Φ (t, xn(t)) dµ ≤
∞∑
n=1

1
2n = 1.

Consequently, ‖Pu‖ ≤ ‖u‖∞.
Finally, we will show that there exists a sequence (εn) such that εn ↓ 0 and

supn(1− εn)|un| ≤ ‖Pu‖ for every u ∈ c0. Define εn = 1
n+1 for every n ∈ N and

notice that 1
1−εn = 1 + 1

n (n ∈ N). Fix any nozero u ∈ c0 and λ > 1. Since 1− εn → 1
as n→∞, then there exists m ∈ N such that

λ(1− εm)|um|
supn(1− εn)|un|

≥ 1

and equivalently

λ|um|
supn(1− εn)|un|

≥ 1

(1− εm)
.
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Now we have

IΦ

(
λPu

supn(1−εn)|un|

)
=

∫
T

Φ

(
t,

∞∑
n=1

λunxn(t) 1
supn(1−εn)|un|χFn(t)

)
dµ ≥

≥
∫
T

Φ
(
t, λumxm(t) 1

supn(1−εn)|un|χFm(t)
)
dµ =

=

∫
Fm

Φ
(
t, λumxm(t) 1

supn(1−εn)|un|

)
dµ ≥

≥
∫
Fm

Φ
(
t, 1

1−εmxm(t)
)
dµ =

∫
Fm

Φ
(
t, (1 + 1

m )xm(t)
)
dµ ≥

≥ 2m+2

∫
Fm

Φ(t, xm(t))dµ ≥ 2m+2 · 1
2m+1 = 2 > 1.

Consequently, supn(1− εn)|un| ≤ ‖Pu‖.
The proof of the conversion is similar to in the previous theorem.
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