ASYMPTOTICALLY ISOMETRIC COPIES OF c_0 IN MUSIELAK-ORLICZ SPACES

Agata Narloch and Lucjan Szymaszkiewicz

Communicated by Henryk Hudzik

Abstract. Criteria in order that a Musielak-Orlicz function space L^{Φ} as well as Musielak-Orlicz sequence space l^{Φ} contains an asymptotically isometric copy of c_0 are given. These results extend some results of [Y.A. Cui, H. Hudzik, G. Lewicki, *Order asymptotically isometric copies of* c_0 *in the subspaces of order continuous elements in Orlicz spaces*, Journal of Convex Analysis **21** (2014)] to Musielak-Orlicz spaces.

Keywords: Musielak-Orlicz space, Luxemburg norm, condition Δ_2 , asymptotically isometric copy of c_0 .

Mathematics Subject Classification: 46E30.

1. INTRODUCTION

Let \mathbb{R} , \mathbb{R}^+ and \mathbb{N} stand for the sets of reals, nonnegative reals and natural numbers, respectively. Let (T, Σ, μ) be an arbitrary σ -finite and complete measure space that does not reduce to a finite number of atoms only. A mapping $\Phi: T \times \mathbb{R} \to [0, +\infty]$ is said to be a *Musielak-Orlicz function* if:

- 1. There is a null set $T_0 \in \Sigma$ such that $\Phi(t,\cdot)$ is an Orlicz function for any $t \in T \setminus T_0$, that is, $\Phi(t,\cdot)$ is convex, even, vanishing at zero, left continuous on \mathbb{R}^+ and not identically equal to zero.
- 2. For any $u \in \mathbb{R}$, the function $\Phi(\cdot, u)$ is Σ -measurable.

Let $L^0 = L^0(T, \Sigma, \mu)$ denote the space of all (equivalence classes of) Σ -measurable real functions defined on T. Given any Musielak-Orlicz function Φ , we define on L^0 a convex modular I_{Φ} by the formula

$$I_{\Phi}(x) = \int_{T} \Phi(t, x(t)) d\mu.$$

The Musielak-Orlicz space L^Φ generated by a Musielak-Orlicz function Φ is defined by the formula

$$L^{\Phi} = \{ x \in L^0 : I_{\Phi}(\lambda x) < \infty \text{ for some } \lambda > 0 \}.$$

We will considered this space under the Luxemburg norm (see [2,9-12]):

$$||x||_{\Phi} = \inf\{\lambda > 0 : I_{\Phi}(x/\lambda) \le 1\}$$

Let Ω denote the nonatomic part of T and \mathcal{N} denote the purely atomic part of T. Then the measure space (T, Σ, μ) can be written as the direct sum

$$(\Omega, \Sigma \cap \Omega, \mu/\Omega) \oplus (\mathcal{N}, 2^{\mathcal{N}}, \mu/2^{\mathcal{N}}).$$

In this paper we will consider two separate cases: μ nonatomic and μ purely atomic with $\mathcal{N} = \mathbb{N}$.

In a nonatomic case we say that Φ satisfies the growth $condition \triangle_2$ ($\Phi \in \triangle_2$ for short) if there exist a null set $B \in \Sigma \cap \Omega$, a constant K > 0 and a nonnegative Σ -measurable function h on Ω such that $\int_{\Omega} \Phi(t, h(t)) d\mu < \infty$ and $\Phi(t, 2u) \leq K\Phi(t, u)$ for all $t \in \Omega \setminus B$ and $u \geq h(t)$ (see [2] and [11]).

In the purely atomic case we assume that $(T, \Sigma, \mu) = (\mathbb{N}, 2^{\mathbb{N}}, \text{card})$ and we will write $\Phi_n(u)$, l^{Φ} and x_n in place of $\Phi(n, u)$, L^{Φ} and x(n), respectively. Then l^{Φ} is called the Musielak-Orlicz sequence space.

We say that $\Phi \in \delta_2^0$ if there are K > 0, a > 0 and a sequence $(c_n)_{n=1}^{\infty}$ in $[0, +\infty]$ such that $\sum_{n=m}^{\infty} c_n < \infty$ for some $m \in \mathbb{N}$ and the inequality

$$\Phi_n(2u) \le K\Phi_n(u) + c_n$$

holds for all $n \in \mathbb{N}$ and $u \in \mathbb{R}$ satisfying $\Phi_n(u) \leq a$ (see [11]).

Recall that if X is a Banach function lattice and $x \in X$, then x is said to be order continuous if $||x_n|| \to 0$ for any sequence (x_n) in X such that $0 \le x_n \le |x|$ and $x_n \to 0$ μ -a.e. The subspace of all order continuous elements in X is denoted by X_a . It is possible that $X_a = \{0\}$. This is the case when X is equal to L^{∞} or $L^1 \cap L^{\infty}$ for example. If the measure space (T, Σ, μ) is purely atomic, then $(L^{\Phi})_a \neq \{0\}$ for any Musielak-Orlicz function Φ . However, if the measure space (T, Σ, μ) is nonatomic, we have $(L^{\Phi})_a \neq \{0\}$ if and only if the set $\{t \in T : \Phi(t, \cdot) \text{ is finitely valued}\}$ has a positive measure, actually $\sup(L^{\Phi})_a = \{t \in T : \Phi(t, \cdot) \text{ is finitely valued}\}$ in this case. Consequently, if Φ does not depend on the parameter t and the measure μ is nonatomic, then $(L^{\Phi})_a \neq \{0\}$ if and only if Φ is finitely valued (this is of course the case for Orlicz spaces).

A Banach function lattice X is said to be order continuous $(X \in OC \text{ for short})$ if $X_a = X$. It is well known that order continuity of a Banach function lattice X as well as of an element $x \in X$ is preserved if we change a norm $\|\cdot\|$ in X into another one $\|\cdot\|$ which is equivalent to $\|\cdot\|$. It is also well known that $(L^{\Phi})_a = E^{\Phi}$, where $E^{\Phi} = \{x \in L^0 : I_{\Phi}(\lambda x) < \infty \text{ for any } \lambda > 0\}$, when the measure space is nonatomic and that in the purely atomic case, we have $(l^{\Phi})_a = h^{\Phi}$, where

$$h^{\Phi} = \Big\{ x = (x_n)_{n=1}^{\infty} \colon \forall_{\lambda > 0} \exists_{n_{\lambda} \in \mathbb{N}} \sum_{n=n_{\lambda}}^{\infty} \Phi_n(\lambda x_n) < \infty \Big\}.$$

It is also known that h^{Φ} is the closure (in the norm topology in l^{Φ}) of the space of all real sequences $x=(x_n)$ with a finite number of coordinates different from zero. Moreover (see [2] and [11]), for a nonatomic measure, we have $L^{\Phi}=E^{\Phi}$ if and only if $\Phi \in \Delta_2$ and for the purely atomic measure the equality $l^{\Phi}=h^{\Phi}$ holds if and only if $\Phi \in \delta_2^0$.

We say that a Banach space $(X, \|\cdot\|)$ contains asymptotically isometric copy of c_0 if there exists a sequence (ϵ_n) of numbers in (0,1) such that $\lim_{n\to\infty} \epsilon_n = 0$ and there exists a linear operator $P: c_0 \to X$ such that

$$\sup_{n} (1 - \epsilon_n)|x_n| \le ||Px|| \le \sup_{n} |x_n|$$

for every element $x = (x_n)$ of c_0 .

The notion of asymptotically isometric copy of c_0 was introduced in [6], where it is shown that if a Banach space X contains such a copy, then X fails the fixed-point property for nonexpansive self-mappings on closed bounded convex subsets of X.

2. RESULTS

Theorem 2.1. h^{Φ} equipped with the Luxemburg norm contains an asymptotically isometric copy of c_0 if and only if Φ does not satisfy the δ_2^0 condition.

Proof. Let $\Phi \not \in \delta_2^0$ and for $\varepsilon > 0, k \in \mathbb{N}, i \in \mathbb{N}$ define the numbers

$$d_i^k = \sup\{\Phi_i((1+\frac{1}{k})x) : \Phi_i(x) \le \frac{1}{2k+1} \text{ and } \Phi_i((1+\varepsilon)x) \ge 2^{k+1}\Phi_i(x)\}.$$

It is known (see [1,4,7,8]) that

$$\sum_{i=1}^{\infty} d_i^k = \infty \text{ for every } k \in \mathbb{N}.$$

Define i_1 as the largest natural number such that

$$\sum_{i=1}^{i_1} d_i^1 \le 1,$$

whenever $d_1^1 \leq 1$ and $i_1 = 0$ otherwise. Then

$$\sum_{i=1}^{i_1+1} d_i^1 > 1.$$

Put $N_1 = \{1, 2, \dots, i_1 + 1\}$. Next define i_2 as the largest natural number such that

$$\sum_{i=i_1+2}^{i_2} d_i^2 \le 1,$$

if $d_{i_1+2}^2 \leq 1$ and $i_2 = i_1 + 2$ otherwise. Then

$$\sum_{i=i_1+2}^{i_2+1} d_i^2 > 1.$$

Put $N_2 = \{i_1 + 2, \dots, i_2 + 1\}$. By induction we can construct the sets

$$N_k = \{i_{k-1} + 2, \dots, i_k, i_k + 1\} \quad (k \in \mathbb{N}, i_0 = -1)$$

such that

$$\sum_{i \in N_k \setminus \{i_k+1\}} d_i^k \le 1 \text{ and } \sum_{i \in N_k} d_i^k > 1.$$

For every $k \in \mathbb{N}$ and $i \in N_k$ there exist such numbers x_i that

$$\sum_{i \in N_k} \Phi_i((1 + \frac{1}{k})x_i) > 1, \ \Phi_i(x_i) \le \frac{1}{2^{k+1}} \text{ and } \Phi_i((1 + \frac{1}{k})x_i) \ge 2^{k+1}\Phi_i(x_i).$$

Hence

$$\sum_{i \in N_k} \Phi_i(x_i) \le \sum_{i \in N_k \setminus \{i_k + 1\}} \frac{1}{2^{k+1}} \Phi_i((1 + \frac{1}{k})x_i) + \frac{1}{2^{k+1}} \le \frac{1}{2^{k+1}} \sum_{i \in N_k \setminus \{i_k + 1\}} d_i^k + \frac{1}{2^{k+1}} \le \frac{1}{2^k}.$$

Define $y_k = \sum_{i \in N_k} x_i e_i$ for $k \in \mathbb{N}$. Then

$$I_{\Phi}(y_k) = \sum_{i \in N_k} \Phi_i(x_i) \le \frac{1}{2^k},$$

$$I_{\Phi}((1 + \frac{1}{k})y_k) = \sum_{i \in N_k} \Phi((1 + \frac{1}{k})x_i) > 1.$$

for any $k \in \mathbb{N}$. Now define an operator $P: c_0 \to h^{\Phi}$ by the formula

$$Pu = \sum_{k=1}^{\infty} u_k y_k \text{ for } u = (u_k) \in c_0.$$

We will show that P is well defined, i.e. $Pu \in h^{\Phi}$ for any $u \in c_0$. Take any $\lambda > 0$ and $l \in \mathbb{N}$ such that $\lambda |u_k| \leq 1$ for every $k \geq l$. Then

$$I_{\Phi}(\lambda \cdot Pu \cdot \chi_{N_l \cup N_{l+1} \cup \dots}) = I_{\Phi}(\lambda \sum_{k=l}^{\infty} u_k y_k) = \sum_{k=l}^{\infty} I_{\Phi}(\lambda u_k y_k) \le$$
$$\le \sum_{k=l}^{\infty} I_{\Phi}(y_k) \le \sum_{k=l}^{\infty} \frac{1}{2^k} < \infty.$$

Consequently, $Pu \in h^{\Phi}$.

Next we will show that $||Pu|| \le ||u||_{\infty}$. For any nonzero $u \in c_0$ we have

$$I_{\Phi}\left(\frac{Pu}{\|u\|_{\infty}}\right) = I_{\Phi}\left(\frac{1}{\|u\|_{\infty}} \sum_{k=1}^{\infty} u_k y_k\right) \le \sum_{k=1}^{\infty} I_{\Phi}\left(\frac{1}{\|u\|_{\infty}} u_k y_k\right) \le \sum_{k=1}^{\infty} I_{\Phi}\left(y_k\right) \le \sum_{k=1}^{\infty} \frac{1}{2^k} = 1.$$

Consequently, $||Pu|| \le ||u||_{\infty}$.

Finally, we will show that there exists a sequence (ε_n) such that

$$\varepsilon_n \downarrow 0$$
 and $\sup_n (1 - \varepsilon_n) |u_n| \le ||Pu||$.

Define for every $k \in \mathbb{N}$ the number $\varepsilon_k = \frac{1}{k+1}$. Observe that $\frac{1}{1-\varepsilon_k} = 1 + \frac{1}{k}$. Take any $\lambda > 1$. For every nonzero $u = (u_k) \in c_0$ there exists $m \in \mathbb{N}$ such that

$$\frac{(1-\varepsilon_m)\lambda|u_m|}{\sup_n(1-\varepsilon_n)|u_n|} \ge 1,$$

equivalently

$$\frac{\lambda |u_m|}{\sup_n (1 - \varepsilon_n) |u_n|} \ge \frac{1}{1 - \varepsilon_m}.$$

Then we have

$$\begin{split} I_{\Phi}\left(\frac{\lambda Pu}{\sup_{n}(1-\varepsilon_{n})|u_{n}|}\right) &= I_{\Phi}\left(\frac{\sum_{k=1}^{\infty}\lambda u_{k}y_{k}}{\sup_{n}(1-\varepsilon_{n})|u_{n}|}\right) \geq I_{\Phi}\left(\frac{\lambda u_{m}y_{m}}{\sup_{n}(1-\varepsilon_{n})|u_{n}|}\right) \geq \\ &\geq I_{\Phi}\left(\frac{1}{1-\varepsilon_{m}}y_{m}\right) = I_{\Phi}\left(\frac{1}{1-\varepsilon_{m}}\sum_{i\in N_{m}}x_{i}e_{i}\right) = \\ &= \sum_{i\in N_{m}}\Phi_{i}\left(\left(1+\frac{1}{m}\right)x_{i}\right) > 1, \end{split}$$

whence

$$\frac{1}{\lambda}\sup_{n}(1-\varepsilon_n)|u_n| \le ||Pu||$$

and from arbitrariness of $\lambda > 1$, we get the thesis. Now assume that $\Phi \in \delta_2^0$. Then $h^{\Phi} = l^{\Phi}$ is the dual space of h^{Ψ} , where Ψ is the Orlicz function complementary in the sense of Young to Φ . Assume that h^{Φ} contains an asymptotically isometric copy of c_0 . Then it contains, as a dual space, an isometric copy of l^{∞} (see [5]). But this contradicts the fact that h^{Φ} is order continuous.

Theorem 2.2. If Φ takes only finite values then: E^{Φ} contains an asymptotically isometric copy of c_0 if and only if Φ does not satisfy the Δ_2 condition.

Proof. If $\Phi < \infty$ and $\Phi \notin \Delta_2^0$ then there exist sequences of measurable functions (x_n) and measurable sets (E_n) such that:

$$\begin{split} E_m \cap E_n &= \emptyset \text{ for } m \neq n, \\ x_n(t) &< \infty \text{ for every } t \in E_n, n \in \mathbb{N}, \\ \int\limits_{E_n} \Phi(t, x_n(t)) d\mu &= \frac{1}{2^n}, \\ \Phi(t, (1 + \frac{1}{n}) x_n(t)) &\geq 2^{n+2} \Phi(t, x_n(t)) \text{ for every } t \in E_n, n \in \mathbb{N}. \end{split}$$

For details see [2].

Take any $n \in \mathbb{N}$ and define for every $k \in \mathbb{N}$ the set

$$E_{n,k} = \{t \in E_n : |x_n(t)| < k\} \cap T_k,$$

where (T_k) is a sequence of measurable sets satisfying: $T_1 \subset T_2 \subset ..., \bigcup T_{n=1}^{\infty} = T$ and $\mu(T_k) < \infty$ for every $k \in \mathbb{N}$. Such sets exist by the assumption of σ -finiteness of the measure μ . Then, we have

$$E_{n,1} \subset E_{n,2} \subset \dots,$$

$$\bigcup_{k=1}^{\infty} E_{n,k} = E_n,$$

$$\mu(E_{n,k}) < \infty \text{ for every } k \in \mathbb{N}.$$

Consequently, we get that $|x_n|\chi_{E_{n,k}}\uparrow|x_n|\chi_{E_n}$ as $k\to\infty$. By the Beppo Levi monotone convergence theorem, we get

$$\lim_{k \to \infty} \int_{E_n} \Phi(t, x_n(t) \chi_{E_{n,k}}(t)) d\mu = \int_{E_n} \Phi(t, x_n(t)) d\mu.$$

Now, for every $n \in \mathbb{N}$ we can fix $k \in \mathbb{N}$ such that

$$\tfrac{1}{2^{n+1}} \leq \int\limits_{E_n} \Phi(t,x_n(t)\chi_{E_{n,k}}(t)) d\mu = \int\limits_{E_{n,k}} \Phi(t,x_n(t)) d\mu \leq \int\limits_{E_n} \Phi(t,x_n(t)) d\mu = \tfrac{1}{2^n}.$$

Let us denote $E_{n,k}$ by F_k .

Summarizing, for now we have constructed a sequence of measurable functions (x_n) and a sequence of measurable sets (F_n) satisfying the following conditions:

$$\begin{split} F_m \cap F_n &= \emptyset \text{ for } m \neq n, \\ x_n \text{ is bounded on } F_n, \ n \in \mathbb{N}, \\ \frac{1}{2^{n+1}} &\leq \int\limits_{F_n} \Phi(t, x_n(t)) d\mu \leq \frac{1}{2^n}, \\ \Phi(t, (1+\frac{1}{n})x_n(t)) &\geq 2^{n+2} \Phi(t, x_n(t)) \text{ for every } t \in F_n, \ n \in \mathbb{N}. \end{split}$$

Define an operator $P: c_0 \to E^{\Phi}$ by the formula

$$Pu = \sum_{n=1}^{\infty} u_n x_n \chi_{F_n} \text{ for } u = (u_n) \in c_0.$$

We will show that $I_{\Phi}(\lambda Pu) < \infty$ for any $u \in c_0$ and $\lambda > 0$. Fix any $u = (u_n) \in c_0$ and take any $\lambda > 0$. There exists $l_0 \in \mathbb{N}$ such that $\lambda |u_n| \leq 1$ for every $n \geq l_0$. We have

$$\begin{split} I_{\Phi}(\lambda P u) &= \int\limits_{T} \Phi\left(t, \lambda \sum_{n=1}^{\infty} u_{n} x_{n}(t) \chi_{F_{n}}(t)\right) = \sum_{n=1}^{\infty} \int\limits_{F_{n}} \Phi(t, \lambda u_{n} x_{n}(t)) d\mu = \\ &= \sum_{n=1}^{l_{0}-1} \int\limits_{F_{n}} \Phi(t, \lambda u_{n} x_{n}(t)) d\mu + \sum_{n=l_{0}F_{n}}^{\infty} \int\limits_{F_{n}} \Phi(t, x_{n}(t)) d\mu \leq \\ &\leq \sum_{n=1}^{l_{0}-1} \int\limits_{F_{n}} \Phi(t, \lambda u_{n} x_{n}(t)) d\mu + \sum_{n=l_{0}}^{\infty} \frac{1}{2^{n}} < \infty, \end{split}$$

since $\int_{F_n} \Phi(t, \lambda u_n x_n(t)) d\mu$ is finite for every $n \in \mathbb{N}$. Consequently, $Pu \in E^{\Phi}$. Next we will show that $||Pu|| \le ||u||_{\infty}$. For any nonzero $u \in c_0$ we have

$$\begin{split} I_{\Phi}\left(\frac{Pu}{\|u\|_{\infty}}\right) &= \int\limits_{T} \Phi\left(t, \sum_{n=1}^{\infty} \frac{1}{\|u\|_{\infty}} u_n x_n(t) \chi_{F_n}(t)\right) d\mu \leq \\ &\leq \int\limits_{T} \Phi\left(t, \sum_{n=1}^{\infty} x_n(t) \chi_{F_n}(t)\right) d\mu = \sum_{n=1}^{\infty} \int\limits_{F_n} \Phi\left(t, x_n(t)\right) d\mu \leq \sum_{n=1}^{\infty} \frac{1}{2^n} = 1. \end{split}$$

Consequently, $||Pu|| \le ||u||_{\infty}$.

Finally, we will show that there exists a sequence (ε_n) such that $\varepsilon_n \downarrow 0$ and $\sup_n (1-\varepsilon_n)|u_n| \leq \|Pu\|$ for every $u \in c_0$. Define $\varepsilon_n = \frac{1}{n+1}$ for every $n \in \mathbb{N}$ and notice that $\frac{1}{1-\varepsilon_n} = 1 + \frac{1}{n}$ $(n \in \mathbb{N})$. Fix any nozero $u \in c_0$ and $\lambda > 1$. Since $1 - \varepsilon_n \to 1$ as $n \to \infty$, then there exists $m \in \mathbb{N}$ such that

$$\frac{\lambda(1-\varepsilon_m)|u_m|}{\sup_n(1-\varepsilon_n)|u_n|} \ge 1$$

and equivalently

$$\frac{\lambda |u_m|}{\sup_n (1-\varepsilon_n)|u_n|} \geq \frac{1}{(1-\varepsilon_m)}.$$

Now we have

$$I_{\Phi}\left(\frac{\lambda Pu}{\sup_{n}(1-\varepsilon_{n})|u_{n}|}\right) = \int_{T} \Phi\left(t, \sum_{n=1}^{\infty} \lambda u_{n} x_{n}(t) \frac{1}{\sup_{n}(1-\varepsilon_{n})|u_{n}|} \chi_{F_{n}}(t)\right) d\mu \geq$$

$$\geq \int_{T} \Phi\left(t, \lambda u_{m} x_{m}(t) \frac{1}{\sup_{n}(1-\varepsilon_{n})|u_{n}|} \chi_{F_{m}}(t)\right) d\mu =$$

$$= \int_{F_{m}} \Phi\left(t, \lambda u_{m} x_{m}(t) \frac{1}{\sup_{n}(1-\varepsilon_{n})|u_{n}|}\right) d\mu \geq$$

$$\geq \int_{F_{m}} \Phi\left(t, \frac{1}{1-\varepsilon_{m}} x_{m}(t)\right) d\mu = \int_{F_{m}} \Phi\left(t, (1+\frac{1}{m})x_{m}(t)\right) d\mu \geq$$

$$\geq 2^{m+2} \int_{F_{m}} \Phi(t, x_{m}(t)) d\mu \geq 2^{m+2} \cdot \frac{1}{2^{m+1}} = 2 > 1.$$

Consequently, $\sup_n (1 - \varepsilon_n) |u_n| \le ||Pu||$.

The proof of the conversion is similar to in the previous theorem.

REFERENCES

- [1] G. Alherk, H. Hudzik, Copies of l^1 and c_0 in Musielak-Orlicz sequence spaces, Comment. Math. Univ. Carolinae **35** (1994) 1, 9–19.
- [2] S. Chen, Geometry of Orlicz spaces, Dissertationes Math. 356 (1996), 1-204.
- [3] Y.A. Cui, H. Hudzik, G. Lewicki, Order asymptotically isometric copies of c₀ in the subspaces of order continuous elements in Orlicz spaces, Journal of Convex Analysis 21 (2014).
- [4] M. Denker, H. Hudzik, Uniformly non-l_n⁽¹⁾ Musielak-Orlicz sequence spaces, Proc. Indian Acad. Sci. 101 (1991), 71–86.
- [5] P.N. Dowling, Isometric Copies of c_0 and l^{∞} in Duals of Banach Spaces, J. Math. Anal. Appl. **244** (2000), 223–227.
- [6] P.N. Dowling, C.J. Lennard, B. Turett, Reflexivity and the fixed point property for nonexpansive maps, J. Math. Anal. Appl. 200 (1996), 653–662.
- [7] H. Hudzik, On some equivalent condition in Musielak-Orlicz spaces, Comment. Math. 24 (1984), 57–64.
- [8] A. Kamińska, Flat Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. 30 (1982), 347–352.
- [9] M.A. Krasnoselskiĭ, Ya.B. Rutickiĭ, Convex functions and Orlicz spaces, Groningen, 1961 (translation).
- [10] W.A.J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.

- [11] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes Math. 1034, Springer-Verlag, 1983.
- [12] M.M. Rao, Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker, New York, 1991.

 ${\bf Agata~Narloch} \\ {\bf agatanarloch@gmail.com}$

University of Szczecin Institute of Mathematics Wielkopolska 15, 70-451 Szczecin, Poland

Lucjan Szymaszkiewicz lucjansz@gmail.com

University of Szczecin Institute of Mathematics Wielkopolska 15, 70-451 Szczecin, Poland

Received: July 19, 2013. Revised: August 13, 2013. Accepted: August 13, 2013.