Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Acetone adsorption on co2-activated tyre pyrolysis char – thermogravimetric analysis

Treść / Zawartość
Warianty tytułu
Języki publikacji
Activation of tyre pyrolysis char (TPC) can significantly increase its market value. To date, it has been frequently carried out in different reactors. In this work, thermogravimetric analysis was used instead. The performance of activated pyrolysis chars was tested by adsorption of acetone vapour and comparison of the equilibrium adsorption capacities for all samples. The highest equilibrium adsorption capacity was observed for the carbon burn-off of 60%. In addition, the equilibrium adsorption capacity of activated TPC decreases by about 10% after eleven adsorption/desorption cycles. Moreover, activation changed the porous structure of pyrolysis chars from mesoporous to micro-mesoporous.
Opis fizyczny
Bibliogr. 20 poz., rys.
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  • 1. Acevedo B., Barriocanal C., 2015. Texture and surface chemistry of activated carbons obtained from tyre wastes. Fuel Process. Technol., 134, 275–283. DOI: 10.1016/j.fuproc.2015.02.009.
  • 2. Acosta R., Fierro V., Martinez de Yuso A., Nabarlatz D., Celzard A., 2016. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char. Chemosphere, 149, 168–176. DOI: 10.1016/j.chemosphere.2016.01.093.
  • 3. Acosta R., Nabarlatz D., Sanchez-Sanchez A., Jagiello J., Gadonneix P., Celzard A., Fierro V., 2018. Adsorption of Bisphenol A on KOH-activated tyre pyrolysis char. J. Environ. Chem. Eng., 6, 823–833. DOI: 10.1016/j.jece.2018.01.002.
  • 4. Antoniou N., Stavropoulos G., Zabaniotou A., 2014. Activation of end of life tyres pyrolytic char for enhancing viability of pyrolysis – Critical review, analysis and recommendations for a hybrid dual system. Renew. Sustain. Energy Rev., 39, 1053–1073. DOI: 10.1016/j.rser.2014.07.143.
  • 5. Antoniou N., Zabaniotou A., 2015. Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. J. Clean. Prod., 101, 1–14. DOI: 10.1016/j.jclepro.2015.03.101.
  • 6. Antoniou N., Zabaniotou A., 2018. Re-designing a viable ELTs depolymerization in circular economy: Pyrolysis prototype demonstration at TRL 7, with energy optimization and carbonaceous materials production. J. Clean. Prod., 174, 74–86. DOI: 10.1016/j.jclepro.2017.10.319.
  • 7. Cortés F.B., Chejne F., Carrasco-Marín F., Moreno-Castilla C., Pérez-Cadenas A.F., 2010. Water adsorption on zeolite 13X: comparison of the two methods based on mass spectrometry and thermogravimetry. Adsorption, 16, 141–146. DOI: 10.1007/s10450-010-9206-5.
  • 8. ETRMA, 2015. End-of-life Tyre Report 2015 36.
  • 9. Farooq M.Z., Zeeshan M., Iqbal S., Ahmed N., Shah S.A.Y., 2018. Influence of waste tire addition on wheat straw pyrolysis yield and oil quality. Energy, 144, 200–206. DOI: 10.1016/
  • 10. Hadi P., Yeung K.Y., Guo J.,Wang H., McKay G., 2016. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications. J. Environ. Manage., 170, 1–7. DOI: 10.1016/ j.jenvman.2016.01.005.
  • 11. Han J., Li W., Liu D., Qin L., Chen W., Xing F., 2018. Pyrolysis characteristic and mechanism of waste tyre: A thermogravimetry-mass spectrometry analysis. J. Anal. Appl. Pyrolysis, 129, 1–5. DOI: 10.1016/j.jaap.2017.12.016.
  • 12. Kruk M., Jaroniec M., Guan S., Inagaki S., 2001. Adsorption and thermogravimetric characterization of mesoporous materials with uniform organic-inorganic frameworks. J. Phys. Chem. B, 105, 681–689. DOI: 10.1021/jp003133f.
  • 13. Lin H.-Y., Yuan C.-S., Chen W.-C., Hung C.-H., 2006. Determination of the adsorption isotherm of vapour-phase mercury chloride on powdered activated carbon using thermogravimetric analysis. J. Air Waste Manag. Assoc., 56, 1550–1557. DOI: 10.1080/10473289.2006.10464561.
  • 14. Majchrzak-Kuc˛eba I., Nowak W., 2005. A thermogravimetric study of the adsorption of CO2 on zeolites synthesized from fly ash. Thermochim. Acta, 437, 67–74. DOI: 10.1016/j.tca.2005.06.003.
  • 15. Martínez J.D., Puy N., Murillo R., García T., Navarro M.V., Mastral A.M., 2013. Waste tyre pyrolysis – A review. Renew. Sustain. Energy Rev., 23, 179–213. DOI: 10.1016/j.rser.2013.02.038.
  • 16. Muller J.C.M., Hakvoort G., Jansen J.C., 1998. DSC and TG study of water adsorption and desorption on zeolite
  • 17. NaA: Powder and attached as layer on metal. J. Therm. Anal. Calorim., 53, 449–466. DOI: 10.1023/A:101013730 7816.
  • 18. Seng-eiad S., Jitkarnka S., 2016. Untreated and HNO3-treated pyrolysis char as catalysts for pyrolysis of waste tire: In-depth analysis of tire-derived products and char characterization. J. Anal. Appl. Pyrolysis, 122, 151–159. DOI: 10.1016/j.jaap.2016.10.004.
  • 19. Sharma V.K., Mincarini M., Fortuna F., Cognini F., Cornacchia G., 1998. Disposal of waste tyres for Energy recovery and safe environment – Review. Energy Convers. Manage., 39, 511–528. DOI: 10.1016/S0196-8904(97)00044-7.
  • 20. Williams P.T., 2013. Pyrolysis of waste tyres: A review. Waste Manage., 33, 1714–28. DOI: 10.1016/j.wasman.2013.05.003.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.