Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A pontoon bridge, also known as a floating bridge, can be used as for pedestrian and vehicle traffic. The buoyancy of the floating bridge limits the maximum load it can carry. This research included experimental runs to study variations of open channel flow characteristics upstream and downstream a floating bridge. Eighty one runs have been carried out using a flume in a hydraulic laboratory. The experimental run program is classified into two main categories; the first investigates the velocity ratios (vds/vus) downstream and upstream the floating bridge. The second category is concerned with the energy head losses (hL) due to the presence of a floating bridge. The experimental runs are carried out using three pontoon lengths, three flow depths, six submerged depths, and three discharges. The results are analysed and graphically presented to help predict hydraulic parameters. The outcomes have shown that the floating bridge upstream, Froude number and submergence of the pontoon are the dominant parameters that affect the studied flow characteristics.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
244--251
Opis fizyczny
Bibliogr. 17 poz., fot., rys., tab.
Twórcy
autor
- Benha University, Shoubra Faculty of Engineering, PO Box 11629, Shoubra, Egypt
autor
- Benha University, Shoubra Faculty of Engineering, PO Box 11629, Shoubra, Egypt
autor
- Advisor to the President of the Iraqi Council of Representatives, Iraq
Bibliografia
- ABOZAID M.A., ELBEBLAWY M.S.A., SAYED-AHMED E.Y. 2016. Structural performance of hybrid composite pontoon compared to steel. In: Proceedings of 11th International Conference on Civil and Architecture Engineering ICCAE-11-2016. Cairo, Egypt. Military Technical College Kobry GGGEl-Kob-bah p. 1–13.
- ARNESON L.A., ZEVENBERGEN L.W., LAGASSE P.F., CLOPPER P.E. 2012. Evaluating scour at bridges. Publication No. FHWA-HIF-12-003-HEC18. 5th ed. Hydraulic Engineering Circular No. 18. Washington, DC. U.S. Department of Transportation Federal Highway Administration.
- BREDE H. 2017. Concept study and analysis of a floating bridge [online]. MSc Thesis. Trondheim. Norwegian University of Science and Technology pp. 113. [Access 10.08.2020]. Available at: https://ntnuopen.ntnu.no/ntnu-xmlui/han-dle/11250/2456604?locale-attribute=en
- DENG S., FU S., MOAN T., WEI W., GAO Z. 2018. Hydro-elastic analysis of a floating bridge in waves considering the effect of the hydrodynamic coupling and the shore sides. ASME 37th International Conference on Ocean, Offshore and Arctic Engineering. 17–22.06.2018 Madrid, Spain. Vol. 1. Offshore Tech-nology. DOI 10.1115/OMAE2018-78738.
- ETTEMA R., NAKATO T., MUSTE M. 2006. An illustrated guide for monitoring and protecting bridge waterways against scour. ProjectTR-515. Final Report. Ames, Iowa. Iowa Highway Research Board, pp. 184.
- FREDRIKSEN A.G., HEIERVANG M.F., LARSEN P.N., SANDNES P.G., SØRBY B., BONNEMAIRE B., NESTEBY A., NEDREB Ø. 2019. Hydrodynamical aspects of pontoon optimization for a side-anchored floating bridge. Journal of Offshore Mechanics and Arctic Engineering. Vol. 141(3) p. 1–9. DOI 10.1115/OMAE 2017-62698.
- HELAL E., SOBEIH M., EZZ EL-DIN M. 2018. Effect of floating bridges on open channels’ flow and bed morphology. Journal of Irrigation and Drainage Engineering. Vol. 44(9). DOI 10.1061/(ASCE)IR.1943-4774.0001331.
- KOU Y., XIAO L., TAO L., PENG T. 2019. Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater. Applied Ocean Research. Vol. 86 p. 28–39. DOI 10.1016/j.apor.2019.02.011.
- MA K., ZHONG J., FENG R., YUAN W. 2019. Investigation of ground-motion spatial variability effects on component and system vulnerability of a floating cable-stayed bridge. Advances in Structural Engineering. Vol. 22(8) p. 1923–1937. DOI 10.1177/1369433219827238.
- NEWMAN J.N. 1977. Marine hydrodynamics. Cambridge, USA. The MIT Press. ISBN 9780262140263 pp. 432.
- PETERSEN Ø.W., ØISETH O., LOURENS E. 2019. Full-scale identification of the wave forces exerted on a floating bridge using inverse methods and directional wave spectrum estimation. Mechanical Systems and Signal Processing. Vol. 120 p. 708–726. DOI 10.1016/j.ymssp.2018.10.040.
- SEIF M., INOUE Y. 1998. Dynamic analysis of floating bridges. Marine Structures. Vol. 11(1–2) p. 29–46. DOI 10.1016/ S0951-8339(97)00012-9.
- SHIXIAO F., WEICHENG C., XUJUN C., CoNg W. 2005. Hydroelastic analysis of a nonlinearly connected floating bridge subjected to moving loads. Marine Structures. Vol. 18 (1) p. 85–107. DOI 10.1016/j.marstruc.2005.05.001.
- TOM N.M., MADHI F., YEUNG R.W. 2017. Power-to-load balancing for heaving asymmetric wave-energy converters with noni deal power take-off. Renewable Energy. Vol. 131 p. 1208–1225. DOI 10.1016/j.renene.2017.11.065.
- VAN JOHNSON D. 2018. Numerical and experimental investigation of ribbon floating bridges [online]. Master of Applied Science in Civil Engineering, Carleton University, Ottawa, Ontario. [Access 10.08.2020]. Available at: https://curve.carleton.ca/system/files/etd/7cf7f2f5-d91d-431b-a808-f1c69c31f4c8/etd_pdf/034e91f8a88966f7c37966bc7c76511c/van-johnson-numericalandexperimentalinvestigationofrib-bon.pdf
- WANG J., LI L., BOGUNOVIĆ JAKOBSEN J., HAVER S.K. 2019. Metocean conditions in a Norwegian fjord in relation to the floating bridge design. Journal of Offshore Mechanics and Arctic Engineering. Vol. 141(2) p. 1–9. DOI 10.1115/ 1.4041534.
- WEHAUSEN J.V., LAITONE E.V. 1960. Surface waves. In: Encyclopedia of Physics. Vol. 9. Berlin. Springer Verl. p. 446–814.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36692d30-dfc8-4fb5-aa52-fde66b7a2e4c