

Kazimierz TRĘBACKI

EKSPERYMENTALNE WYZNACZANIE OBCIĄŻEŃ ŚCIAN ZBIORNIKÓW OKRĘTOWYCH PODCZAS FALOWANIA

Streszczenie

W artykule przedstawiono wyniki badań eksperymentalnych, dotyczących współoddziaływania konstrukcji zbiornika z cieczą. Analiza ta dotyczy badań modelowych. Badanie tego zjawiska ma odniesienie do często spotykanych zdarzeń praktycznych, jak zderzenie zbiornikowca z innym statkiem lub nabrzeżem portowym, gwałtowne hamowanie cystern samochodowych lub kolejowych itp. Rozpoznanie zjawiska doprowadziło do jednoczesnych pomiarów następujących wielkości:

- a) wymuszanych amplitud układu generator-ciecz
- b) ciśnień hydrodynamicznych na ścianie zbiornika
- c) kształtu powierzchni swobodnych
- d) rozkładu prędkości cieczy w pobliżu ścianki.

WSTĘP

Zagadnienie dotyczy wyznaczania obciążeń hydrodynamicznych na ścianach zbiorników okrętowych i oceanotechnicznych podczas falowania. Wypełnienie zbiorników jest z reguły częściowe i ten przypadek jest najbardziej niebezpieczny z punktu widzenia dynamiki jednostek pływających. Rozwiązanie tego zagadnienia może odbyć się na drodze teoretycznej, symulacji komputerowej lub poprzez badania eksperymentalne w kanale badawczym.

W ocenie strukturalnej zbiorników wypełnionych cieczą poddanych obciążeniom nieustalonym, konieczne jest uwzględnienie efektu hydrodynamicznego. Dynamiczna analiza nieliniowa w stanach nieustalonych konstrukcji poddanej falowaniu zawiera geometrię nieliniową. Rozpatrywanie wzajemnego oddziaływania konstrukcja-ciecz napotyka na wiele trudności ze względu na wewnętrzną złożoność zagadnienia.

Artykuł zawiera eksperymentalne wyznaczanie obciążeń ścian zbiorników podczas falowania. Na początku w analizie teoretycznej przytoczono tylko ostateczne wzory na rozkład ciśnień i kształt powierzchni swobodnej, znane w literaturze [6]. Badania modelowe natomiast pozwoliły wyznaczyć rozkład ciśnień hydrodynamicznych na ścianie pionowej zbiornika. Dodatkowo wyznaczono kształt powierzchni swobodnej oraz rozkład prędkości cieczy w pobliżu ścianki.

1. ANALIZA TEORETYCZNA

Ruch cieczy wymuszany jest sztywną ścianą (generatorem) w przyjętym układzie współrzędnych OXYZ, jak na Rys. 1. Przyjmuje się założenie, że ciecz jest nielepka, nieściśliwa i ruch cieczy jest potencjalny.

Rys. 1. Półpasmo cieczy ze ścianą zbiornika

Funkcja potencjału $\varphi(x, z, t)$ spełnia równanie falowe

$$\nabla^2 \varphi - \frac{1}{c^2} \ddot{\varphi} = 0 \tag{1}$$

Warunki brzegowe na dnie zbiornika i sztywnej ścianie OA (patrz Rys. 1) są następujące:

$$\left. \frac{\partial \varphi}{\partial z} \right|_{z=0} = 0 , \quad \left. \frac{\partial \varphi}{\partial x} \right|_{x=0} = V \tag{2}$$

tutaj V - zadane pole prędkości

natomiast na powierzchni swobodnej jest zlinearyzowany warunek fali powierzchniowej

$$\left(\frac{\partial^2 \varphi}{\partial t^2} + g \cdot \frac{\partial \varphi}{\partial z}\right)\Big|_{z=h} = 0$$
(3)

Ruch sztywnej ściany OA opisuje równanie

$$x(t) = x_0 \cdot \sin \omega t \tag{4}$$

gdzie: x_0 - amplituda

 ω - częstość wymuszenia

W ogólnym przypadku x_0 może zależeć od z, np. $\eta_0(z)$. Dla wymuszenia (4) z warunku brzegowego na ścianie mamy:

$$\left. \frac{\partial \varphi}{\partial x} \right|_{x=0} = \frac{\partial x(t)}{\partial t} = V = x_0 \cdot \omega \cos \omega t \tag{5}$$

Po licznych przekształceniach otrzymamy rozwiązanie na potencjał prędkości cieczy $\varphi(x, z, t)^{-1}$

Dla przyjętego wymuszenia ruchu potencjał prędkości ma postać [6]:

$$\varphi = A_0 \frac{\omega}{r_0} \operatorname{ch} k_0 z \cdot \sin(r_0 x - \omega t) - \omega \sum_{j=1}^{\infty} A_j \frac{e^{-r_j x}}{r_j} \cos k_j z \cdot \cos \omega t$$
(6)

gdzie:
$$r_0 = \sqrt{k_0^2 + k_c^2}$$
, $r_j = \sqrt{k_j^2 - k_c^2}$, $j = 1, 2, ..., k_j = \frac{j\pi}{h}$

$$k_{c} = \frac{\omega}{c}, \ k_{0} \cong \frac{\omega^{2}}{g}, \ A_{0} = \frac{4sh \, k_{0}h}{2k_{0}h + sh \, 2k_{0}h} \eta_{0}(z_{i})$$

Na podstawie (6) wyznacza się elewację powierzchni swobodnej:

$$\eta(x,t) = \alpha \left[\frac{A_0}{r_0 h} ch k_0 h \cdot \cos(r_0 x - \omega t) - \sum_{j=1}^{\infty} \frac{A_j e^{-r_j x}}{r_j h} \cos k_j h \cdot \sin \omega t \right]$$
(7)

oraz rozkład ciśnień na pionowej płycie (x = 0)

$$p(z,t) = \gamma \alpha \left[\frac{A_0}{r_0 h} ch k_0 h \cdot \cos \omega t - \sum_{j=1}^{\infty} \frac{A_j}{r_j h} \cos k_j z \cdot \sin \omega t \right]$$
(8)

gdzie:

 $\alpha = \frac{\omega^2 h}{q}$ jest liczbą Froude'a

 γ - ciężar właściwy cieczy

 z_i - jest wartością średnią w przedziału < 0, h >.

2. BADANIA MODELOWE

2.1. Sterowanie ruchem klapy generatora

Pliki sterujące ruchem klapy generatora otrzymano w wyniku konwersji danych tekstowych na dane zapisane w formacie *M11*, akceptowane przez program sterujący ruchem klapy generatora. Do konwersji użyto programu narzędziowego *WinF132 ver.3.2*, służącego do obróbki danych pomiarowych (analiza Fouriera, filtracja Kalmana, aproksymacja itp.). W celu zapewnienia płynnego rozpoczęcia ruchu układu klapa generatora-woda, zastosowano wymuszenie ruchu klapy w postaci procesu trzykrotnie różniczkowalnego opisanego równaniem:

$$x(t) = A_{3}(\tau) \cos \omega t + B_{3}(\tau) \sin \omega t,$$

$$A_{3}(t) = \frac{D}{6}t^{3}e^{-\tau}, \quad B_{3}(t) = D\left[1 - \left(1 + \frac{\tau}{1!} + \frac{\tau^{2}}{2!} + \frac{\tau^{3}}{3!}\right)e^{-\tau}\right], \quad (9)$$

$$\tau = \eta t$$

gdzie ω jest częstością kołową ruchu klapy, D jej maksymalnym wychyleniem, a η parametrem determinującym czas narastania amplitudy przemieszczenia klapy do momentu osiągnięcia przez nią jej wartości maksymalnej, a tym samym powtarzalności (im większa wartość tego parametru, tym ten czas jest krótszy). Przyjęto dla wszystkich plików sterujących stałą wartość D = 2cm i $\eta = 2$. W celu uzyskania innych amplitud klapy stosowano w programie sterującym jej ruchem odpowiedni mnożnik (faktor ruchu klapy), określający wielokrotność wychylenia klapy, w stosunku do amplitudy D = 2cm. Do obliczenia częstości kołowej generacji ω , dla założonej długości fali λ i głębokości h wody wykorzystano związek dyspersyjny:

$$\omega^2 = gk \tanh kh, \quad k = \frac{2\pi}{\lambda}.$$
 (10)

gdzie g jest przyśpieszeniem ziemskim. Przyjęto parametry ruchu klapy, dla których długość generowanej fali powierzchniowej λ równa była kolejno dwóm odległościom generatora od

klapy, $L=0.5\lambda$, jednej, a więc $L=\lambda$ i dwóm-trzecim odległości $L=1.5\lambda$. Utworzono sześć plików sterujących, po trzy dla każdej głębokości. Częstość próbkowania sygnału sterującego przyjęto $f_p = 50$ Hz, a maksymalny czas trwania ruchu $t_{max} = 75$ s.

2.2. Pomiary ciśnień na ścianie pionowej zbiornika w kanale falowym

Pomiary wykonano w dwóch seriach dla głębokości h_1 =50cm i h_2 =60cm. Każda seria obejmowała rejestracje ciśnień na przegrodzie pionowej, wychylenia powierzchni swobodnej wody w wyznaczonych punktach, amplitudy ruchu klapy generatora, prędkości cząsteczek w punkcie w pobliżu przegrody. Schematy pomiarowe z rozmieszczeniem sond falowych,

czujników ciśnienia i prądomierza, przedstawiono na Rys. 3. dla głębokości 50cm i dla głębokości 60cm. Przyjęto następujące oznaczenia:

- SF1 SF3 sondy do pomiaru elewacji powierzchni swobodnej,
- CC1 CC7 czujniki ciśnienia,
- *PR* prądomierz.

Rys. 3. Schematy pomiarowe dla głębokości 50cm i 60cm.

Dla ilustracji, na kolejnych rysunkach przedstawiono wykresy wybranych przebiegów pomierzonych wielkości falowania, ciśnień i prędkości zarejestrowanych za pomocą sondy adv. Rys. 4. przedstawia pomierzone ciśnienia i przemieszczenia generatora dla fali o długości λ =740cm i faktorze równym 1 przy głębokości *H*=50cm. Kolejny rysunek (Rys.5.) przedstawia wychylenie powierzchni swobodnej dla fali λ =740cm i głębokości *H*=50cm. Odległości między sondami wynosiły |*SF1 SF2*|=185cm, |*SF2 SF3*|=92.5cm, sonda *SF1* oddalona była od generatora o 92.5cm, namiot odległość sondy *SF3* od przegrody pionowej równa była 1cm. Prędkości w punkcie dla tego przebiegu, zarejestrowane sondą ADV, pokazuje Rys. 6. Punkt pomiarowy sondy ADV dla wszystkich przebiegów znajdował się w odległości 30cm od przegrody i 20cm nad dnem.

Rys. 4. Zarejestrowane ciśnienia dla fali A i głębokości 50cm.

Rys. 5. Zarejestrowane wychylenia powierzchni swobodnej dla fali A i głębokości 50cm.

Rys. 6. Zarejestrowane prędkości w punkcie dla fali A i głębokości 50cm.

Rys. 7. Zarejestrowane ciśnienia dla fali A i głębokości 60cm.

2.3. Pomiary prędkości cząstek cieczy w punkcie przy użyciu PIV

Do wykonania pomiarów wykorzystano sprzęt pomiarowy znajdujący się na wyposażeniu laboratorium hydraulicznego IBW PAN. Jest to układ pomiarowy umożliwiający pomiar dwuwymiarowego pola prędkości cząstek cieczy w badanym obszarze, tzw. "Advanced PIV System for Quantitative Flow Field Analysis FlowMaster". Zastosowana technika pomiaru PIV (Particle Image Velocimetry) jest to tak zwana technika anemometrii obrazowej do wyznaczania pól prędkości z wykorzystaniem cząstek wskaźnikowych. Wykorzystany do pomiarów System PIV dostarcza informację przestrzenną odnośnie wartości i kierunków wektorów prędkości. System ten składa się z dwóch laserów o długości fali 532 nm (dual laser-head system) emitujących spójne wiązki o bardzo małej rozbieżności, w zakresie światła zielonego. System laserów zintegrowany jest z tzw. "szybką kamerą" (high-speed camera) umożliwiającą rejestrację sekwencji obrazów z bardzo dużą częstotliwością zapisu. Stąd też możliwy jest pomiar i wyznaczenie pól prędkości na podstawie analizy prędkości przemieszczenia cząstek posiewu w znanej różnicy czasu pomiędzy zarejestrowanymi obrazami, następującymi po sobie w bardzo małym przedziale czasu (aż do 100 ns).

Układy pomiarowe przedstawiono na rysunkach Rys. 8. i Rys. 9.

Fala typu "A" - λ =7.40m, ω =1.9776s⁻¹

Rys. 8. Schemat pomiarowy PIV dla fali "A".

Fala typu "B" - λ =3.70m, ω =3.5802s⁻¹

Rys. 9. Schemat pomiarowy PIV dla fali "B".

Pomiary przy użyciu PIV wykonano dla dwóch długości fali tj. λ =740cm i λ =370 cm. Głębokość wody wynosiła 60cm a faktor 1. Częstotliwość próbkowania dla pomiarów PIV to f_p =15Hz. Oś X skierowana jest przeciwnie w stosunku do osi X przy pomiarach prędkości przy użyciu ADV. Na Rys. 8 i 9 X_{PIV} i Z_{PIV} oznaczają osie układu współrzędnych pomiarach przy użyciu PIV. Czas pomiaru wynosił t=40s. W wyniku pomiarów, dla każdej fali otrzymano 600 plików z danymi. Pliki te oznaczone są kolejno od B00001 do B00600. Częstotliwość próbkowania f_p =15Hz oznacza, że piętnaście kolejnych plików tworzy zapis pól prędkości w ciągu jednej sekundy, kolejne 15 w następnej sekundzie. Pliki posiadają rozszerzenie *dat*. Dane zostały umieszczone w katalogach ah60f10 dla fali "A" i bh60f10 dla fali "B". Każdy plik składa się z czterech kolumn. Kolumny te w nagłówkach plików opisane są jako "position(1)", "position(2)", "Vx", "Vy". Opisy te oznaczają, kolejno: X_{PIV} , Z_{PIV} , składowa wektora prędkości w kierunku X_{PIV} , składowa wektora prędkości w kierunku Z_{PIV} . (J). Z każdego pola wektorowego w postaci tekstowej utworzono wykresy. Nazwy plików z wykresami są analogiczne do nazw plików tekstowych i posiadają one rozszerzenie *bmp*.

2.4. Uwagi do pomiarów metodą PIV

Przy większych stromościach fali, na powierzchni swobodnej wody pojawiały się fale odbite od pionowej przegrody. Zmarszczki te powodowały uginanie się promieni świetlnych lasera i uniemożliwiały dokładny pomiar prędkości. Zjawisko to jest widoczne w fali typu "B", a więc krótszej i osiągającej większą stromość, od *t*=18s zapisu. Program sonda ADV jest wewnętrznym programem PIV i dotyczy położenia prądomierza w przestrzeni badanej pola prędkości.

WNIOSKI

Podsumowując:

- badania modelowe prowadzą do uściślenia obciążeń hydrodynamicznych na ściankach zbiornika podczas falowania,
- znając rozkład ciśnień na ścianie zbiornika można wyznaczyć siłę wypadkową,
- siła całkowita wyznaczona z eksperymentu jest dokładniejsza od siły wyznaczonej teoretycznie.

EXPERIMENTAL DETERMINATION OF THE WALL TANK SHIP LOADS INDUCED BY WAVES

Abstract

The article presents The results of experimental investigations of interactions between structure tank and a liquid.

The analysis is based on modelling research. The investigation of this phenomenon has direct reference to frequently recorded real events, such as collision of a tanker with another ship ora a harbour berth, rapid braking of a road or rail tanker, etc. Recognition of this phenomenon is based on simultaneous measurements of the following parameters:

a) excited amplitudes of the generator-liquid system

- b) hydrodynamic pressures on the wall tank
- *c) elevation of the free surface*
- d) distribution of the velocity of water particles around the tank surface

BIBLIOGRAFIA

- 1. Cho J.R., Lee H.W., Kim K.W.: Free vibration analysis of baffled liquid-storage tanks by the structural-acoustic finite element formulation. J. Sound and Vibration 2002, 258-847.
- 2. Dudson E., Gee N.: *Optimisation of the seakeeping and performance of a 40-knot pentamaran container vessel.* In: Proceedings of the 6th International Conference on Fast Sea Transportation FAST 2001, I: 225-233.
- 3. Faltinsen O.M., Zhao R.: *Numerical predictions of ship motions at high forward speed*. Philosophical Transactions of the Royal Society of London 1991, Series A, 334, 241-252.
- 4. Hedzielski B., Sobierajski E., Szmidt K.: *Badania eksperymentalne tłumienia drgań swobodnych płyty zanurzonej w cieczy*. In: Materiały XII Krajowej Konferencji Mechaniki Płynów 1996, 387-394.

- 5. Sobierajski E., Schmidt J., Trębacki K., Wilde P.: *Experimental investigations of fluid tank wall vibrations induced by breaking*. Marine Technology Transactions 1996, vol. 7, 293-311.
- 6. Szmidt J.K.: Wprowadzenie do hydrosprężystości konstrukcji morskich. IBW PAN, 1999.
- 7. Trębacki K.:. Drgania swobodne zbiorników wypełnionych cieczą. Cz. I. Analiza teoretyczna. Zeszyty Naukowe Politechniki Gdańskiej 1990, nr 418 Budownictwo Okrętowe XLVII, 197-210.
- 8. Trębacki K.: *Wpływ bezwładności obrotowej ścian szczytowych zbiornika z cieczą na widmo częstości drgań.* Polish Academy of Sciences, Branch in Gdansk, Marine Technology Transaction 1993, vol. 4, 224-246.
- 9. Trębacki K.: *Experimental investigations of the hydroelasticity of a liquid-filled tank*. The Archive of Mechanical Engineering 2008, vol. LV, no. 2, 103-127.
- 10. Wilde P., Szmidt J.K.: Vibrations of a plate in fluid and associated damping due to energy transmission by dilatational waves. J. Theoretical and Applied Mechanics 1999, vol. 2 no. 37, 267-282.

Autor: **dr inż. Kazimierz TRĘBACKI** - Politechnika Gdańska