Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The efficient reuse of homogeneous catalyst is important. Cation complex of [Ru(η6 -p-cymene)(PPh3 )(CH3 CN) Cl]PF6 with different ligands was synthesized and characterized by infrared spectroscopy (IR), 1 H-, 13 C- and 31 P-nuclear magnetic resonance spectroscopy (1 H-, 1 3C- and 31 P-NMR), element analysis (EA), and high resolution mass spectrometry (HR-MS). The complex was used as a catalyst for the hydrogen transfer reduction of carbonyl for the first time, presenting an excellent catalytic performance of 89%–98% conversion of acetophenone and its derivatives. The catalyst may be efficiently reused by the electro-adsorption of 10 times to one catalyst recovery. The cation [Ru] complex presented advantages of both homogeneous and heterogeneous catalysts.
Czasopismo
Rocznik
Tom
Strony
75--79
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
- School of Mathematics and Chemical Engineering, Changzhou Institute of Technology, Department of Chemical Engineering, Changzhou 213022, P.R. China
autor
- School of Mathematics and Chemical Engineering, Changzhou Institute of Technology, Department of Chemical Engineering, Changzhou 213022, P.R. China
autor
- School of Mathematics and Chemical Engineering, Changzhou Institute of Technology, Department of Chemical Engineering, Changzhou 213022, P.R. China
autor
- School of Mathematics and Chemical Engineering, Changzhou Institute of Technology, Department of Chemical Engineering, Changzhou 213022, P.R. China
Bibliografia
- 1. Chen, F., Wang, T. & Jiao, N. (2014). Recent advances in transition-metal-catalyzed functionalization of unstrained carbon–carbon bonds. Chem. Rev. 114, 8613−8661. DOI: 10.1021/cr400628s.
- 2. D’yakonov, V. A., Trapeznikova, O. A., de Meijere, A. & Dzhemilev, U. M.(2014). Metal complex catalysis in the synthesis of spirocarbocycles. Chem. Rev. 114, 5775−5814. DOI: 10.1021/cr400291c.
- 3. Margalef, J., Pàmies, O. & Diéguez, M. (2016). Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. Tetrahedron Lett. 57, 1301–1308. DOI: 10.1016/j.tetlet.2016.02.022.
- 4. Zhang, G. Q., Yin, Z. W. & Tan, J. W. (2016). Cobalt(II)-catalysed transfer hydrogenation of olefins. RSC Adv. 6, 22419–22423. DOI: 10.1039/C6RA02021F.
- 5. Ito, J. & Nishiyama, H. (2014). Recent topics of transfer hydrogenation. Tetrahedron Lett. 55, 3133–3146. DOI: 10.1016/j.tetlet.2014.03.140.
- 6. Castellanos-Blanco, N., Arévalo, A. & García, J. J. (2016). Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and ahydrogen donor. Dalton Trans. 45, 13604–13614. DOI: 10.1039/C6DT02725C.
- 7. Thangavel, S., Boopathi, S., Mahadevaiah, N., Kolandaivel, P., Pansuriya, P. B. & Friedrich, H. B. (2016). Catalytic oxidation of primary aromatic alcohols using half sandwichIr(III), Rh(III) and Ru(II) complexes: A practical and theoretical study. J. Mol. Catal. A: Chem. 423, 160–171. DOI: 10.1016/j.molcata.2016.06.017.
- 8. Saadati, F., Khani, N., Rahmani, M. & Piri, F. (2016). Preparation and characterization of nanosized copper (II) oxide embedded in hyper-cross-linked polystyrene: Highly efficient catalyst for aqueous-phase oxidation of aldehydes to carboxylic acids. Catal. Commun. 79, 26–30. DOI: 10.1016/j.catcom.2015.12.016.
- 9. Ruiz, S., Villuendas, P. & Urriolabeitia, E. P. (2016). Rucatalysed C–H functionalisations as a tool for selective organic synthesis. Tetrahedron Lett. 57, 3413–3432. DOI: 10.1016/j.tetlet.2016.06.117.
- 10. Pappas, I. & Chirik, P.J. (2016). Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. J. Am. Chem. Soc. 138, 13379–13389. DOI: 10.1021/jacs.6b08009.
- 11. Schlogl, R. (2015). Heterogeneous catalysis [J]. Angew. Chem. Int. Ed. 54, 3465–3520. DOI: 10.1002/anie.201410738.
- 12. Nishimura, S. & Ebitani, K. (2016). Recent advances in heterogeneous catalysis with controlled nanostructured precious monometals. Chem. Cat. Chem. 8, 2303–2316. DOI: 10.1002/cctc.201600309.
- 13. Corma, A., García, H. & Xamena, F. X. L. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655. DOI: 10.1021/cr9003924.
- 14. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M. & Basset, J. M. (2011). Magnetically recoverable nano-catalysts. Chem.Rev. 111, 3036–3075. DOI: 10.1021/cr100230z.
- 15. Fernandez, F. E., Puerta, M.C. & Valerga, P. (2011). Half-sandwich Ruthenium(II) picolyl-NHC complexes: synthesis, characterization, and catalytic activity in transfer hydrogenation reactions. Organometallics 30, 5793–5802. DOI: 10.1021/om200665f.
- 16. Pan, S. G., Matsuo, Y., Endo, K. & Shibata, T. (2012). Cationic iridium-catalyzed enantioselective activation of secondary sp3 C-H bondadjacent to nitrogen atom. Tetrahedron 68, 9009–9015. DOI: 10.1016/j.tet.2012.08.071.
- 17. Verendel, J. J., Pàmies, O., Diéguez, M. & Andersson, P.G. (2014). Asymmetric hydrogenation of olefins using chiral crabtree-typecatalysts: scope and limitations. Chem. Rev. 114, 2130−2169. DOI: 10.1021/cr400037u.
- 18. Perez, M., Elangovan, S., Sannenberg, A., Junge, K. & Beller, M. (2016). Molecularly defined manganese pincer complexes for selective transfer hydrogenation of ketones. Chem. Sus. Chem. 9, 1–5. DOI: 10.1002/cssc.201601057.
- 19. Kanchanadevi, A., Ramesh, R. & Semeril, D. (2016). Efficient and recyclable Ru(II) arene thioamide catalysts for transfer hydrogenation of ketones: Influence of substituent on catalytic outcome. J. Organomet. Chem. 808, 68–77. DOI: 10.1016/j.jorganchem.2016.02.016.
- 20. Hodson, E. & Simpson, S.J. (2004). Synthesis and characterisation of [(η6-cymene)Ru(L)X2] compounds:single crystal X-ray structure of[(η6-cymene)Ru(P{OPh}3)Cl2] at 203 K. Polyhedron 23, 2695–2707. DOI: 10.1016/J.POLY.2004.06.016.
- 21. Hanif, M., Nazarov, A. A. & Hartinger, C.G. (2012). Synthesis of [RuII(η6-p-cymene)(PPh3)(L)Cl]PF6 complexes with carbohydrate-derived phosphites, imidazole or indazole co-ligands. Inorg. Chim. Acta 380, 211–215. DOI:10.1016/j.ica.2011.10.007.
- 22. Hu, C.Z., Liu, F. Y., Lan, H. C. & Liu, H. J. (2015). Preparation of a manganese dioxide/carbon fiber electrode for electrosorptive removal of copper ions from water. J. Coll. Inter. Sci. 446, 359–365. DOI: 10.1016/J.JCIS.2014.12.051.
- 23. Amin. A.S. (2002). Simple and selective spectrophotometric determination ofruthenium after solid phase extraction with somequinoxaline dyes into microcrystalline p-dichlorobenzene. Spectrochim. Acta Part. A. 58, 1831–1837. DOI: 10.1016/S1386-1425(01)00681-3.
- 24. Chaplin, A. B., Fellay, C., Laurenczy, G. & Dyson, P.J. (2007). Mechanistic Studies on the Formation of η2-Diphosphine(η6-p-cymene)ruthenium(II) Compounds. Organometallics 26, 586–593. DOI: 10.1021/om060752n.
- 25. Gichumbi, J. M., Friedrich, H. B. & Omondi, B. (2016). Synthesis and characterization of half-sandwich ruthenium complexes with N-alkyl pyridyl-imine ligands and their application in transfer hydrogenation of ketones. Transit. Met. Chem. 41, 867–877. DOI: 10.1007/s11243-016-0089-5.
- 26. Lin, T. H., Das, K., Datta, A., Leu, W. J., Hsiao, H. C., Lin, C. H., Guh, J. H., Huang, J. H. (2016). Synthesis and characterization of ruthenium compounds incorporating keto-amine ligands. The applications of catalytic transfer hydrogenation and cancer cell inhibition. J. Organomet. Chem. 807, 22–28. DOI: 10.1016/j.jorganchem.2016.01.029.
- 27. Chai, H. N., Liu, T. T., Wang, Q. F. & Yu, Z. K. (2015). Substituent effect on the catalytic activity of Ruthenium(II) complexes bearing a pyridyl-supported pyrazolyl-imidazolyl ligandfor transfer hydrogenation of ketones. Organometallics, 34, 5278−5284. DOI: 10.1021/acs.organomet.5b00727.
- 28. Mai, V. H. & Nikonov, G. I. (2016). Transfer Hydrogenation of Nitriles, Olefins, and N-Heterocycles Catalyzed by an N-Heterocyclic Carbene-Supported Half-Sandwich Complex of Ruthenium. Organometallics 35, 943−949. DOI: 10.1021/acs.organomet.5b00967.
- 29. Yamamura, T., Nakane, S., Nomura, Y., Tanaka, S. & Kitamura, M. (2016). Development of an axially chiral sp3P/sp3NH/sp2N-combined lineartridentate liganddfac-selective formation of Ru(II) complexes and application to ketone hydrogenation. Tetrahedron 72, 3781–3789. DOI: 10.1016/j.tet.2016.02.007.
- 30. Paul, B., Chakrabarti & Kundu, K. S. (2106). Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complexfor transfer hydrogenation of ketones and nitriles:impact of the number of 2-hydroxypyridinefragments. Dalton Trans. 45, 11162–11171. DOI: 10.1039/C6DT01961G.
- 31. Rath, R. K., Nethaji, M. & Chakravarthy, A. R. (2001). Transfer hydrogenation of acetophenone promoted by (arene) ruthenium(II) reduced Schiff base complexes: an X-ray structure of [(η6-p-cymene)RuCl(OC6H4-2-CH2NHC6H4-p-Me)]. Polyhedron 20, 2735–2739. DOI: 10.1016/S0277-5387(01)00894-4.
- 32. Samec, J. S. M., Backvall, J. E., Andersson, P. G. & Brandt, P. (2006). Mechanistic aspects of transition metal-catalyzed hydrogen transfer reactions. Chem. Soc. Rev. 35, 237–248. DOI: 10.1039/B515269K.
- 33. Wang, G., Qian, B. Q., Dong, Q., Yang, J. Y., Zhao, Z.B. & Qiu, J. S. (2013). Highly mesoporous activated carbon electrode for capacitive deionization. Sep. Purif. Technol. 103, 216–221. DOI:10.1016/j.seppur.2012.10.041.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3662c7bd-8fb8-4950-b1cc-2eec3c55bb03