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Abstract. We consider a nonlinear Neumann elliptic equation driven by a p-Laplacian-type
operator which is not homogeneous in general. For such an equation the energy functional
does not need to be coercive, and we use suitable variational methods to show that the
problem has at least two distinct, nontrivial smooth solutions. Our formulation incorporates
strongly resonant equations.
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1. INTRODUCTION

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. We study the following
nonlinear Neumann problem:




−div a (∇u(z)) = f

(
z, u(z)

)
a.e. in Ω,

∂u

∂na
= 0 on ∂Ω,

(1.1)

where ∂u
∂na

= (a(∇u(z)), n(z))RN , with n(·) = (n1(·), . . . , nN (·)) the outward unit
normal vector on ∂Ω. Here a = (ai)Ni=1 : RN → RN is a continuous, strictly monotone
map on which we impose certain conditions (see Section 2) to obtain a p-Laplacian
type operator, which unifies several important differential operators. Similar con-
ditions are studied widely in the literature (see Damascelli [5], Montenegro [17],
Motreanu-Papageorgiou [18]). Also, f(z, ζ) is a Carathéodory function, i.e., for all
ζ ∈ R, the function z 7−→ f(z, ζ) is measurable and for almost all z ∈ Ω, the function
ζ 7−→ f(z, ζ) is continuous.
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The aim of this work is to prove existence and multiplicity results for problem (1.1),
when the energy functional of the problem is noncoercive. In fact, our hypotheses on
the reaction f incorporates into our framework equations which are strongly resonant
at infinity. Such problems are of special interest, since they exhibit a partial lack of
compactness. Such a result has been obtained in Gasiński-Papageorgiou [11] for a
Neumann problem driven by the p-Laplacian operator. Here we manage to employ the
methods used in [11] for a much more general class of differential operators, taking
advantage of some of the properties of the p-Laplacian, which this class possesses.

For the problems in which the energy functional is coercive we refer to
Gasiński-Papageorgiou [12, 14] (for the Dirichlet boundary value problem) and to
[13,15] (for Neumann boundary value problems) or to Drábek-Kufner-Nicolsi [7] and
Drábek-Milota [8].

2. MATHEMATICAL BACKGROUND AND THE SETTING
OF THE NONHOMOGENEOUS OPERATOR

In this paper we will denote by (·, ·)Rn the scalar product in RN and by | · | - the
norm given by this scalar product. Also ‖ · ‖ denotes the norm in the Sobolev space
W 1,p(Ω). We will assume that 1 < p < ∞. We will use the notation of the Sobolev
critical exponent

p∗ =
{

Np
N−p if p < N,

+∞ if p ≥ N.
For the convenience of the reader, we present below the main mathematical tools

which will be needed in the proofs of our results.

Theorem 2.1 (Theorem 5.2.10 of [9]). Let X be a Banach space and let X∗ be its
topological dual. Suppose φ ∈ C1(X) is bounded below and satisfies the Palais-Smale
condition at level c := infX φ, i.e.

every sequence {xn}n ⊆ X such that φ(xn) −→ c and φ′(xn) −→ 0 in X∗
admits a strongly convergent subsequence.

Then there exists x0 ∈ X, such that c = φ(x0).

To formulate the next result, for φ ∈ C1(X) and c ∈ R, we define the following
sets:

φc :=
{
x ∈ X : φ(x) ≤ c

}
,

Kφ :=
{
x ∈ X : φ′(x) = 0

}
,

Kc
φ :=

{
x ∈ Kφ : φ(x) = c

}
.

Theorem 2.2 (Theorem 5.1.13 of [9] (Second Deformation Theorem)). If φ ∈ C1(X),
a ∈ R, a < b ≤ +∞, φ satisfies the Palais-Smale condition for every c ∈ [a, b), φ has
no critical values in (a, b) and φ−1({a}) contains at most a finite number of critical
points of φ, then there exists a homotopy h : [0, 1]× (φb \Kb

φ) −→ φb such that
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(a) h
(
1, φb \Kb

φ

)
⊆ φa;

(b) h(t, x) = x for all t ∈ [0, 1], all x ∈ φa;
(c) φ

(
h(t, x)

)
≤ φ

(
h(s, x)

)
for all t, s ∈ [0, 1], s ≤ t, all x ∈ φb \Kb

φ.

Theorem 2.3 (Theorem 1.7 of [16]). Let h : R+ → R be a C1-function satisfying

δ <
th′(t)
h(t) ≤ c0 for all t > 0

with some constants δ > 0, c0 > 0. We define

Ĥ(ξ) =
ξ∫

0

h(t)dt.

By W 1,Ĥ(Ω) we denote the class of functions which are weakly differentiable in the set
Ω with ∫

Ω

Ĥ(|∇u|)dz <∞.

Let α ≤ 1, Λ, Λ1, M0 be positive constants and let Ω ⊆ RN be an open set. Suppose that
A = (A1, . . . , AN ) : Ω× [−M0,M0]×RN → RN is differentiable, B : Ω× [−M0,M0]×
RN → R is a Carathéodory function and functions A, B satisfy the following conditions:

(∇A(z1, ξ1, y)x, x))RN ≥
h(|y|)
|y| |x|

2, y 6= 0N , (2.1a)
∣∣∣ ∂
∂yj

Ai(z, ξ, y)
∣∣∣ ≤ Λh(|y|)

|y| , y 6= 0N , (2.1b)

|A(z1, ξ1, y)−A(z2, ξ2, y)| ≤ Λ1 (1 + h(|y|)) (|z1 − z2|α + |ξ1 − ξ2|α) , (2.1c)
|B(z1, ξ1, y)| ≤ Λ1(1 + h(|y|)|y|) (2.1d)

for all z1, z2 ∈ Ω, ξ1, ξ2 ∈ [−M0,M0] and x, y ∈ RN . Then any W 1,Ĥ(Ω) solution u of

divA(z, u,∇u) +B(z, u,∇u) = 0 (2.2)

in Ω with |u| ≤M0 in Ω is in C1,β(Ω) for some positive β depending on α, Λ, δ, c0, N .

Next, let us recall some basic spectral properties of the Neumann p-Laplacian,
which will be useful in the multiplicity results. We say that a number λ ∈ R is an
eigenvalue of (−∆p,W

1,p(Ω)) if the problem

−div(|∇u(z)|p−2∇u(z)) = λ|u(z)|p−2u(z) for a.a. z ∈ Ω, ∂u

∂np
= 0 on ∂Ω

admits a nontrivial solution u ∈W 1,p(Ω), which we call an eigenfunction correspond-
ing to λ. Here ∂u

∂np
= |∇u|p−2(∇u, n)RN . It is well known that all eigenvalues of
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(−∆p,W
1,p(Ω)) are nonnegative and the smallest eigenvalue λ0 = 0 is isolated and

simple (see Gasiński-Papageorgiou [9]). There are several variational characterizations
of the first nontrivial eigenvalue λ1 > λ0 = 0 (see for example [1]). The most convenient
for our purposes is the following.

Proposition 2.4. Let 1 < p <∞ and define

C(p) =
{
u ∈W 1,p(Ω) :

∫

Ω

∣∣u(z)
∣∣p−2

u(z)dz = 0
}
.

Then

λ1 = min
u∈Cp\{0}

‖∇u‖pp
‖u‖pp

.

Moreover, for all u ∈ Cp we have the following Poincaré-Wirtinger inequality:

λ1‖u‖pp ≤ ‖∇u‖pp. (2.3)

Throughout this paper, the hypotheses on a(y) are the following:

H(a): a : RN → RN is such that a(y) = a0(|y|)y for any y ∈ RN with a0(t) > 0 for
all t > 0 and

(i) a0 ∈ C1(0,∞), t 7→ ta0(t) strictly increasing on (0,∞);
(ii) there exist some constants δ, c0, c1, c2, c3 > 0, q ∈ (1, p) and a function

h ∈ C1(0,∞) satisfying

δ <
th′(t)
h(t) ≤ c0 for all t > 0, (2.4)

c1t
p−1 ≤ h(t) ≤ c2(tq−1 + tp−1) for all t > 0,

such that

|∇a(y)| ≤ c3
h(|y|)
|y| for all y ∈ RN\{0};

(iii) for all y, ξ ∈ RN such that y 6= 0 we have

(∇a(y)ξ, ξ))RN ≥
h(|y|)
|y| |ξ|

2;

(iv) the map a : RN → RN is strictly monotone, i.e.

(a(x)− a(y), x− y)RN > 0 for all x, y ∈ RN , x 6= y.
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We have the following properties of the map a(y).
Proposition 2.5. If hypotheses H(a) hold, then:
(a) the map a : RN → RN is maximal monotone, i.e.

(b− a(y), x− y)RN > 0 ⇒ b = a(x) for all y ∈ RN ;

(b) there exists c4 > 0 such that for all y ∈ RN

|a(y)| ≤ c4(|y|q−1 + |y|p−1); (2.5)

(c) for all y ∈ RN we have
(a(y), y)RN ≥

c1
p− 1 |y|

p. (2.6)

Let G0(t) :=
∫ t

0 a0(s)sds and

G(y) := G0(‖y‖), y ∈ RN .

Then G is strictly convex, G(0) = 0 and ∇G(y) = a(y) for y ∈ RN\{0}. Moreover, for
all y ∈ RN we have

c1
p(p− 1) |y|

p ≤ G(y) ≤ c4(|y|q + |y|p). (2.7)

Example 2.6. The following maps satisfy hypotheses H(a):
(i) a(y) = |y|p−2y with 1 < p < ∞. This map corresponds to the p-Laplacian

operator defined by

∆pu = div(|∇u|p−2∇u), u ∈W 1,p(Ω).

(ii) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞. This map corresponds to the
(p, q)-differential operator defined by

∆pu+ ∆qu, u ∈W 1,p(Ω).

(iii) a(y) = (1+|y|2)(p−2)/2y with 1 < p <∞. This map corresponds to the generalized
p-mean curvature differential operator defined by

div((1 + |∇u|2)(p−2)/2∇u), u ∈W 1,p(Ω).

Remark 2.7. The hypotheses H(a) unify the operators from Example 2.6 (i)–(iii),
which are widely examined due to their applications in physics (see, for example,
[3, 6]). The motivation for this kind of hypotheses comes from the regularity theorem
of Lieberman (Theorem 2.3): in the case A(z, ξ, y) = a(y), B(z, ξ, y) = f(z, ξ), one
obtains the following form of the assumptions (2.1):

(∇a(y)x, x))RN ≥
h(|y|)
|y| |x|

2, y 6= 0N , (2.8a)
∣∣∣ ∂
∂yj

ai(y)
∣∣∣ ≤ Λh(|y|)

|y| , y 6= 0N , (2.8b)

|f(z, ξ)| ≤ Λ1(1 + h(|y|)|y|). (2.8c)
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Thus, assuming on the map a hypotheses H(a)(ii)–(iii), we guarantee that for a
suitable reaction term f , all weak solutions of problem (1.1) actually have locally
Hölder continuous first derivatives.

Let A : W 1,p(Ω)→W 1,p(Ω)∗ be defined by

〈A(u), v〉 =
∫

Ω
(a(∇u(z)),∇v(z)))RN dz, u, v ∈W 1,p(Ω), (2.9)

where 〈·, ·〉 denotes duality brackets for (W 1,p(Ω)∗,W 1,p(Ω)).
Observe that by Proposition 2.5, the proof of Proposition 3.1 in

Gasiński-Papageorgiou [10] remains valid for hypotheses H(a)(i)–(iv). Thus we have
the following result.

Proposition 2.8. The nonlinear map A : W 1,p(Ω) −→W 1,p(Ω)∗ defined by (2.9) is
bounded, continuous and of type (S)+, i.e., if

un −→ u weakly in W 1,p(Ω)

and
lim sup
n→+∞

〈
A(un), un − u

〉
≤ 0,

then un −→ u in W 1,p(Ω).

To deal with the boundary condition in problem (1.1), we use appropriate function
space framework, due to Casas-Fernández [4].

3. EXISTENCE THEOREM

In this section we will prove an existence theorem for some version of problem (1.1),
whose particular case will be used for the multiplicity result in the next section. Namely,
we consider the following nonlinear Neumann problem:




−diva (∇u(z)) = f

(
z, u(z)

)
+ h(z) in Ω,

∂u

∂na
= 0 on ∂Ω,

(3.1)

where h ∈ L∞(Ω) is such that ∫

Ω

h(z)dz = 0 (3.2)

and on f we will impose some hypotheses.
In our work we will consider the following direct sum decomposition of the Sobolev

space W 1,p(Ω)
W 1,p(Ω) = R⊕ V,
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where

V =
{
u ∈W 1,p(Ω) :

∫

Ω

u(z)dz = 0
}
.

Hence, every u ∈W 1,p(Ω) admits a unique decomposition

u = ru + û with ru ∈ R and û ∈ V.

Due to Poincaré-Wirtinger inequality (see for example Gasiński-Papageorgiou [9, p. 84]),
there exists a constant c0(N, p) > 0 such that for every v ∈ V we have

‖v‖p ≤ c0(N, p)‖∇v‖p. (3.3)

In particular, ‖∇(·)‖p is an equivalent norm on V .
Before stating the existence result, let us consider the following auxiliary problem:




−diva (∇u(z)) = h(z) in Ω,
∂u

∂na
= 0 on ∂Ω.

(3.4)

Let ψ : V −→ R be the C1-functional, defined by

ψ(v) =
∫

Ω

G(∇v(z))dz −
∫

Ω

h(z)v(z)dz for all v ∈ V.

Proposition 3.1. Problem (3.4) has a solution v0 ∈ V ∩C1(Ω), which is a minimizer
of ψ.

Proof. As Lp(Ω) ⊆ L1(Ω), there exists a constant ĉ1 > 0 such that

‖v‖1 ≤ ĉ1‖v‖p for all v ∈ V. (3.5)

Thus, by virtue of the Poincaré-Wirtinger inequality (see (3.3) and recall that ‖∇(·)‖p
is an equivalent norm on V ) and Propostion 2.5 (see (2.7)), we see that ψ is coercive:

ψ(v) ≥ c1
p(p− 1)‖∇v‖

p
p − ĉ1‖h‖∞‖v‖p ≥

c1
p(p− 1)‖∇v‖

p
p − ĉ1c0(N, p)‖∇v‖p.

Also, using (2.7), we see easily that ψ is sequentially weakly lower semicontinuous
(observe that G is strictly convex). Hence, by the Weierstrass theorem, we can find
v0 ∈ V such that

ψ(v0) = inf
{
ψ(v) : v ∈ V

}
,

so
ψ′(v0) = 0 in V ∗.

This implies
〈
A(v0), v

〉
=
∫

Ω

h(z)v(z)dz for all v ∈ V. (3.6)
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For y ∈W 1,p(Ω), let us define

v(z) = y(z)− 1
|Ω|N

∫

Ω

y(z)dz.

Then v ∈ V . Thus, from (3.6) and (3.2) we have
〈
A(v0), y

〉
=
∫

Ω

h(z)y(z)dz.

As y ∈W 1,p(Ω) was arbitrary, we obtain

A(v0) = h in W 1,p(Ω)∗.

This implies that v0 ∈ V solves (3.4) with v0 ∈ L∞(Ω) (see, for example, Gasiński-
-Papageorgiou [10, pp. 860–861]).

By the regularity theorem of Lieberman (Theorem 2.3), we have

v0 ∈ V ∩ C1(Ω).

The hypotheses on the reaction term f are the following:
H(f)1: f : Ω× R −→ R is a Carathéodory function such that f(z, 0) = 0 for almost
all z ∈ Ω and
(i) there exist a ∈ L∞(Ω)+, c5 > 0, r ∈ (p, p∗) such that

∣∣f(z, ζ)
∣∣ ≤ a(z) + c5|ζ|r−1 for almost all z ∈ Ω, all ζ ∈ R;

(ii) there exists ξ ∈ L1(Ω) such that

F (z, ζ) ≤ ξ(z) for almost all z ∈ Ω, all ζ ∈ R,

with F (z, ζ) =
∫ ζ

0 f(z, s)ds;
(iii) there exists c6 ∈ R \ {0} such that

∫

Ω

F (z, c6)dz > 0.

Example 3.2. The following function satisfies hypotheses H(f)1 (for the sake of
simplicity we drop the z-dependence):

f(ζ) =





π

2e |ζ|
p−2ζ if |ζ| ≤ 1,

π

2 exp(−|ζ|) sin
(π

2 ζ
)

+ sgn(ζ) exp(−|ζ|) cos
(π

2 ζ
)

if |ζ| > 1.

In this case the potential function F is given by

F (ζ) =





π

2ep |ζ|
p if |ζ| ≤ 1,

π

2ep − exp(−|ζ|) cos
(π

2 ζ
)

if |ζ| > 1.
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Let ϕ : W 1,p(Ω) −→ R be the C1-functional, given by

ϕ(u) =
∫

Ω

G(∇u(z))dz −
∫

Ω

F
(
z, u(z)

)
dz −

∫

Ω

h(z)u(z)dz, u ∈W 1,p(Ω)

(the energy functional for (3.1)). For the unique decomposition u = ru + vu with
ru ∈ R and vu ∈ V of any u ∈W 1,p(Ω), we have

ψ(u) = ψ(vu)−
∫

Ω

F
(
z, u(z)

)
dz, u ∈W 1,p(Ω) (3.7)

(see (3.2)).

Remark 3.3. Hypotheses H(f)1 incorporate problems which are strongly resonant
at infinity (see Bartolo-Benci-Fortunato [2]). As a consequence, we encounter a partial
lack of compactness in terms of the Palais-Smale condition, i.e. the energy functional φ
does not satisfy this condition at any level c ∈ R. Thus we need to specify the interval,
in which the Palais-Smale condition is satisfied.

In what follows, let v0 ∈ V ∩C1(Ω) be a solution of problem (3.4), which exists by
Proposition 3.1, and also

β :=
∫

Ω

lim sup
|ζ|→+∞

F (z, ζ)dz <∞ (3.8)

(see hypothesis H(f)1(ii)).

Proposition 3.4. If hypotheses H(a) and H(f)1 hold and

c < ψ(v0)− β ∈ (−∞,+∞],

then ϕ satisfies the Palais-Smale condition at level c.

Proof. Let {un}n≥1 ⊆W 1,p(Ω) be a sequence such that

ϕ(un) −→ c < ψ(v0)− β (3.9)

and
ϕ′(un) −→ 0 in W 1,p(Ω)∗. (3.10)

As the sequence {ϕ(un)}n is convergent in W 1,p(Ω), we have that it is bounded by
some constant M1 > 0.

Recall that there exists unique rn ∈ R, vn ∈ V such that

un = rn + vn for all n ≥ 1. (3.11)



898 Liliana Klimczak

First we will show that the sequence {vn}n is bounded in W 1,p(Ω). Indeed, by (2.7)
(see Proposition 2.5), hypothesis H(f)1(ii), (3.5) and the Poincaré-Wirtinger inequality
(3.3), for ĉ2 := ĉ1c0(N, p) > 0 we have that

M1 ≥ ϕ(u) ≥ c1
p(p− 1)‖∇vn‖

p
p −

∫

Ω

F (z, un)dz −
∫

Ω

hvndz

≥ c1
p(p− 1)‖∇vn‖

p
p − ‖ξ‖1 − ĉ2‖∇vn‖p for all n ≥ 1.

This implies that there exist some constants M2 > 0, ĉ3 > 0 such that

ĉ3‖∇vn‖p ≤M2 for all n ≥ 1

(recall that p > 1). Thus

the sequence {vn}n≥1 ⊆W 1,p(Ω) is bounded

(recall that ‖∇(·)‖p is an equivalent norm on V ⊆W 1,p(Ω)).
So, by passing to a suitable subsequence if necessary, we may assume that

vn −→ v̂ weakly in W 1,p(Ω),
vn −→ v̂ in Lp(Ω),

vn(z) −→ v̂(z) for almost all z ∈ Ω.

In particular, for almost all z ∈ Ω there exists m(z) ≥ 0 such that
∣∣vn(z)

∣∣ ≤ m(z) for almost all z ∈ Ω, all n ≥ 1, (3.12)

with m ∈ Lp(Ω).

Claim. The sequence {un}n ⊆W 1,p(Ω) is bounded.

Aiming for a contradiction, suppose that, passing to a subsequence if necessary, we
have

‖un‖ −→ +∞.
Using the unique decomposition (3.11), (3.12) and the fact, that the sequence {vn}n ⊆
W 1,p(Ω) is bounded, we can easily see that this implies

∣∣un(z)
∣∣ −→ +∞ for almost all z ∈ Ω,

which leads us to the following contradiction:

ψ(v0)− β > c = lim inf
n→∞

ϕ(un) = lim inf
n→∞


ψ(vn)−

∫

Ω

F (z, un(z))dz




≥ ψ(v0)−
∫

Ω

lim sup
n→∞

F (z, un(z))dz = ψ(v0)− β.
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Here we have used the Fatou lemma for functions bounded from below and the fact
that v0 is a minimizer of ψ (see Proposition 3.1). This proves the claim.

As the sequence {un}n ⊆ W 1,p(Ω) is bounded, it admits a weakly convergent
subsequence. So, passing to a subsequence if necessary, we can find u ∈W 1,p(Ω) such
that

un −→ u weakly in W 1,p(Ω), (3.13)
un −→ u in Lr(Ω) (3.14)

(recall that r ∈ (p, p∗)).
We want to show that un −→ u in W 1,p(Ω) by the use of Proposition 2.8. For this

purpose, let us first notice that using our assumption (3.10), we can find a sequence
{εn}n ⊆ (0,∞) such that
∣∣∣∣
〈
A(un), w

〉
−
∫

Ω

f(z, un(z))w(z)dz−
∫

Ω

h(z)y(z)dz
∣∣∣∣ ≤ εn‖w‖ for all w ∈W 1,p(Ω),

with εn ↘ 0. Setting w = un − u ∈W 1,p(Ω) we obtain
∣∣∣∣
〈
A(un), un − u

〉
−
∫

Ω

f(z, un(z))(un − u)(z)dz −
∫

Ω

h(z)(un − u)(z)dz
∣∣∣∣

≤ εn‖un − u‖ for all n ≥ 1.
(3.15)

As h ∈ L∞(Ω) ⊆ Lp′(Ω) with 1
p + 1

p′ = 1, from (3.13) we have
∫

Ω

h(z)(un − u)(z)dz −→ 0. (3.16)

Also, by H(f)1(ii) and (3.14), we obtain

∣∣∣∣
∫

Ω

f(z, un(z))(un − u)(z)dz
∣∣∣∣ ≤ ‖un − u‖r



∫

Ω

|f(z, un(z))|r′
dz




1/r′

≤ ‖un − u‖r



∫

Ω

a(z)r/(r−1)dz + c5‖un‖rr




1/r′

≤M3‖un − u‖r
(3.17)

with some constant M3 > 0 and r′ > 1 such that 1
r + 1

r′ = 1. Therefore, if in (3.15)
we pass to the limit as n→ +∞, using (3.16), (3.17) and (3.14) we obtain

lim
n→+∞

〈
A(un), un − u

〉
= 0.
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Thus, by Proposition 2.8, we have that

un −→ u in W 1,p(Ω)

and so we have proven that ϕ satisfies the Palais-Smale condition at any level c <
ψ(v0)− β.

Having this compactness result, we are ready to state an existence theorem for
problem (1.1).

Theorem 3.5. Let v0 ∈ V be a minimizer of ψ (see Proposition 3.1). If hypotheses
H(a), H(f)1 hold and

β =
∫

Ω

lim sup
|ζ|→+∞

F (z, ζ)dz <
∫

Ω

F (z, v0)dz,

then problem (3.1) admits a nontrivial solution u∗ ∈ C1(Ω).

Proof. We are going to apply Theorem 2.1 to our problem. From hypothesis H(f)1(ii),
we have that ϕ is bounded below (see (3.7)).

Set
mϕ := inf

{
ϕ(u) : u ∈W 1,p(Ω)

}
> −∞. (3.18)

As
−∞ < mϕ ≤ ϕ(v0) = ψ(v0)−

∫

Ω

F (z, v0)dz < ψ(v0)− β,

by Proposition 3.4, we have that ϕ satisfies the Palais-Smale condition at level mϕ.
Therefore, we can use Theorem 2.1 to find u∗ ∈W 1,p(Ω) such that

ϕ(u∗) = mϕ.

Moreover, by hypothesis H(f)1(iii), we have that

ϕ(u∗) = mϕ ≤ ϕ(c6) < 0 = ϕ(0),

so
u∗ 6= 0.

Also, we have
ϕ′(u∗) = 0,

so
A(u∗) = Nf (u∗) + h

and thus u∗ ∈ C1(Ω) (see the proof of Proposition 3.1) is a nontrivial solution
of (3.1).

Remark 3.6. Observe that hypothesis H(f)1(iii) is needed only to guarantee that
u∗ is nontrivial. (Observe that v0 can be trivial if h = 0.)
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4. MULTIPLICITY THEOREM

In this section we prove a multiplicity theorem for problem (1.1) (i.e., we set h = 0 in
problem (3.1). To this end we need additional hypotheses on f :

H(f)2: f : Ω× R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost
all z ∈ Ω, hypotheses H(f)2(i)–(iii) are the same as H(f)1(i)–(iii) and

(iv) we have
β =

∫

Ω

lim sup
|ζ|→+∞

F (z, ζ) < 0

and there exists ϑ ∈ L∞(Ω)+, ϑ 6= 0, such that

ϑ(z) ≤ lim inf
ζ→0

F (z, ζ)
|ζ|p uniformly for almost all z ∈ Ω;

(v) we have

F (z, ζ) ≤ λ̂1
c1

p(p− 1) |ζ|
p for almost all z ∈ Ω, all ζ ∈ R,

with λ̂1 > 0 being the first nonzero eigenvalue of the negative Neumann
p-Laplacian and c1 > 0 as in H(a)(ii).

Example 4.1. The following function satisfies hypotheses H(f)2 (as before, for the
sake of simplicity, we drop the z-dependence):

f(ζ) =





λ̂1
c1

p− 1 |ζ|
p−2ζ if |ζ| ≤ 1,

λ̂1c1 + p− 1
p− 1

ζ

|ζ|p+2 − |ζ|
r−2ζ if |ζ| > 1,

where p < r < p∗. In this case the potential function F is given by

F (ζ) =





λ̂1
c1

p(p− 1) |ζ|
p if |ζ| ≤ 1,

− λ̂1c1 + p− 1
p(p− 1)

1
|ζ|p −

1
r
|ζ|r + 2λ̂1 · c1

p(p− 1) + r + p

rp
if |ζ| > 1.

Now the energy functional ϕ̂ : W 1,p(Ω) −→ R is given by

ϕ̂(u) =
∫

Ω

G(∇u)dz −
∫

Ω

F
(
z, u(z)

)
dz, u ∈W 1,p(Ω).

Evidently, ϕ̂ ∈ C1(W 1,p(Ω)
)
.
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Theorem 4.2. If hypotheses H(a) and H(f)2 hold, then problem (1.1) has at least
two nontrivial smooth solutions u∗1, u∗2 ∈ C1(Ω).

Proof. Let v0 ∈ V be a minimizer of ψ (see Proposition 3.1). Since we obtain problem
(1.1) by setting h = 0 in problem (3.1), we have

v0 = 0.

Therefore, ∫

Ω

F
(
z, v0(z)

)
dz = 0 > β

(see hypothesis H(f)2(iv)). Thus, we can apply Theorem 3.5 to obtain one nontrivial
smooth solution u∗1 ∈ C1(Ω).

The existence of the second nontrivial solution will be shown via the second
deformation theorem (see Theorem 2.2).

First, we prove that ϕ is negative on BR ∩ R for some R > 0, where

BR =
{
u ∈W 1,p(Ω) : ‖u‖ ≤ R

}
.

For any fixed ε > 0, we can find δ = δ(ε) > 0 such that

F (z, ζ) ≥
(
ϑ(z)− ε

)
|ζ|p for almost all z ∈ Ω, all |ζ| ≤ δ

(see hypothesis H(f)2(iv)). Then

ϕ(r) = −
∫

Ω

F (z, r)dz ≤ |r|p
(
ε|Ω|N −

∫

Ω

ϑ(z)dz
)
, r ∈ [−δ, δ].

Thus, choosing ε ∈
(
0, 1
|Ω|N

∫
Ω
ϑ(z)dz

)
, we have that ϕ(r) < 0, r ∈ [−δ(ε), δ(ε)] and

max
{
ϕ(r) : r ∈ BR ∩ R

}
< 0 for all R ∈

(
0, δ|Ω|

1
p

N

)
. (4.1)

Claim. Define

Γ :=
{
γ ∈ C

(
BR ∩ R, W 1,p(Ω)

)
: γ|

∂BR∩R
= id|

∂BR∩R

}
.

Then
ĉR := inf

γ∈Γ
max

v∈BR∩R
ϕ
(
γ(v)

)
≥ 0 for all R > 0.

Note that (
∂BR ∩ R

)
∩ C(p) = ∅ for all R > 0.

For every u ∈ C(p) (see Proposition 2.4), we have

ϕ(u) ≥ c1
p(p− 1)‖∇u‖

p
p − λ̂1

c1
p(p− 1)‖u‖

p
p ≥ 0 (4.2)
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(see (2.7), H(f)2(v) and the Poincaré-Wirtinger inequality) and

inf
C(p)

ϕ = 0

(see Gasiński-Papageorgiou [9, p. 756]). For a fixed R > 0 and arbitrary γ ∈ Γ, let us
define

σ(r) :=
∫

Ω

∣∣γ(r)
∣∣p−2

γ(r)dz, r ∈ BR ∩ R = [−R0, R0],

with R0 := R|Ω|
1
p

N > 0. Then

σ(−R0) < 0 < σ(R0).

(Observe that ∂BR ∩ R = {±R0}.) Thus, by virtue of the Bolzano theorem, we can
find r̂ ∈ BR ∩ R such that

σ(r̂) =
∫

Ω

∣∣γ(r̂)
∣∣p−2

γ(r̂)dz = 0.

That means
γ(r̂) ∈ C(p)

and
γ
(
BR ∩ R

)
∩ C(p) 6= ∅.

Thus, from (4.2) we obtain
ĉR ≥ 0 (4.3)

(recall that γ ∈ Γ was arbitrary). This proves the claim.

Set
a = inf ϕ = ϕ(u∗1) < 0 and b = ϕ(0) = 0.

By virtue of Proposition 3.4 and hypothesis H(f)2(iv), we have that ϕ satisfies the
Palais-Smale condition for every level c ∈ [a, b].

To obtain a contradiction, suppose that {0, u∗1} are the only critical points of ϕ.
Then

ϕ−1({a}) = {u∗1}
and we are able to apply Theorem 2.2. Using (4.1) and the homotopy

ĥ : [0, 1]× (ϕb \Kb
ϕ) −→ ϕb

given by Theorem 2.2, we can easily produce a map

γ0 : BR ∩ R −→ W 1,p(Ω)

such that
ϕ
(
γ0(u)

)
< 0 for all u ∈ Br ∩ R,
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which implies ĉR < 0 (see (4)), in contradiction with the claim (for details see for
example Gasiński-Papagriorgiou [11]).

Thus, there exists u∗2 ∈ Kϕ, such that u∗2 6∈ {0, u∗1}. Then

A(u∗2) = Nf (u∗2).

That implies that u∗2 ∈ C1(Ω) solves (1.1) (see the proof of Proposition 3.1). Thus we
have proved the existence of two distinct, nontrivial solutions of (1.1), as desired.
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