PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A local model and calibration set ensemble strategy for open-path FTIR gas measurement with varying temperature

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Open-Path Fourier Transform Infrared OP-FTIR spectrometers are commonly used for the measurement of atmospheric pollutants and of gases in industrial processes. Spectral interpretation for the determination of gas concentrations is based on the HITRAN database line-by-line modeling method. This article describes algorithms used to model gas spectra and to determine gas concentration under variable temperatures. Integration of individual rotational lines has been used to reduce the impact of spectrometer functions on the comparison of both measured and synthetic modeled spectra. Carbon monoxide was used as an example. A new algorithm for gas concentration retrieval consisting of two ensemble methods is proposed. The first method uses an ensemble of local models based on linear and non-linear PLS (partial least square) regression algorithms, while the second is an ensemble of a calibration set built for different temperatures. It is possible to combine these methods to decrease the number of regression models in the first ensemble. These individual models are appropriate for specific measurement conditions specified by the ensemble of the calibration set. Model selection is based on comparison of gas spectra with values determined from each local model.
Słowa kluczowe
Rocznik
Strony
513--524
Opis fizyczny
Bibliogr. 53 poz., rys., wykr.
Twórcy
  • Lublin University of Technology, Institute of Electronics and Information Technology, Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
  • [1] Li S., Zhu R., Li J. (2011). Research on new spectral reconstruction solutions for Fourier-transform spectrometer. Optica Applicata, 41(1), 121-133.
  • [2] Sanchez A., Eddings E., Mondragon F. (2010). Fourier Transform Infrared (FTIR) Online Monitoring of NO, N2O, and CO2 during Oxygen-Enriched Combustion of Carbonaceous Materials. Energy Fuels, 24, 4849-4853.
  • [3] Christian T.J., Kleiss B., Yokelson R.J., Holzinger R., Crutzen P.J., Hao W.M., Shiarai T., Blacke D.R. (2004). Comperhensive laboratory measurements of biomass-burning emissions: 2. First intercomparison of open-path FTIR, PTR-MS, and GC-MS/FID/ECD. Journal of Geophysical Research: Atmospheres, 109 (D2), 27.
  • [4] Kastek M., Piatkowski T., Dulski R., Chamberland M., Lagueux P., Farley V. (2012). Method of gas detection applied to an infrared hyperspectral sensor. Photonics Letters of Poland, 4(4), 146-148.
  • [5] Czerwiński M., Mroczka J., Girasole T., Gouesbet G., Grehan G. (2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. I. Direct Problem: hybrid-Method Approximation. Applied Optics, 40(9), 1514-1524.
  • [6] Czerwiński M., Mroczka J., Girasole T., Gouesbet G., Grehan G. (2001). Light-Transmittance Predictions Under Multiple-Light-Scattering Conditions. II. Inverse Problem: Particle Size Determination. Applied Optics, 40(9), 1525-1531.
  • [7] Shao L., Griffiths P.R. (2007). Automatic Baseline Correction by Wavelet Transform for Quantitative Open-Path Fourier Transform Infared Spectroscopy. Environ. Sci. Technol, 41, 7054-7059.
  • [8] Shao L., Wang W., Griffiths P.R., Leytem A.B. (2013). Increasing the Quantitative Credibility of Open-Path Fourier Transform Infrared (FT-IR) Spectroscopic Data, with Focus on Several Properties of the Background Spectrum. Applied Spectroscopy 67(3), 335-341.
  • [9] Griffiths P.R., Shao L., Leytem A.B. (2009). Completely automated open-path FT-IR spectrometry. AnalBioanal Chem, 393, 45-50.
  • [10] Bacsik Z., Mink J., Keresztury G. (2004). FTIR Spectroscopy of the Atmosphere. I. Principles and Methods. Applied Spectroscopy Reviews, 39 (3), 295-363.
  • [11] Jellison G.P., Miller D.P. (2006). Determination of gas plume temperature from molecular emission spectra. Optical Engineering, 45(1), 016201-1-8.
  • [12] Bak J., Clausen S. (2002). FTIR emission spectroscopy methods and procedures for real time quantitative gas analysis in industrial environments. Measurement Science and Technology, 13, 150-156.
  • [13] Schafer K, Brockmann K., Heland J., Wiesen P., Jahn C., Legras O. (2005). Multipass open-path Fourier transform infrared measurements for nonintrusive monitoring of gas turbine exhaust composition. Applied Optics, 44(11), 2189-2201.
  • [14] Shao L., Liu B., Griffiths P.R., Leytem A.B. (2010). Advances in Data Processing for Open-Path Fourier Transform Infrared Spectrometry of Greenhouse Gases. Anal. Chem., 82, 8027-8033.
  • [15] Hart B.K., Berry R.J., Griffiths P.R. (2000). Effects of Resolution on Quantification in Open-Path Fourier Transform Infrared Spectrometry under Conditions of Low Detector Noise. 2. Partial Least Squares Regression. Environ. Sci. Technol., 34, 1346-1351
  • [16] Hong D., Cho S. (2003). Improved methods for performing multivariate analysis and deriving background spectra in atmospheric open-path FT-IR monitoring. Applied Spectroscopy, 57(3), 299-308.
  • [17] Mroczka J., Szczuczyński D. (2013). Improved technique of retrieving particle size distribution form angular scattering measurements. Journal of Quantitative Spectroscopy & Radiative Transfer, http://dx.doi.org/10.1016/j.jqsrt.2013.05.030.
  • [18] Griffith D.W.T., Deutscher N.M., Caldow C., Kettlewell G., Riggenbach M., Hammer S. (2012). A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmospheric Measurement Techniques, 5, 2481-2498.
  • [19] Mroczka J., Szczuczyński D. (2009). Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurement., Metrology and Measurement Systems, 16(3), 333-357.
  • [20] Szczuczyński D.K., Mroczka J. (2009). Comparing the quality of solutions of inverse problem in nephelometric and turbidimetric measurements. Optica Applicata, 39(3), 521-531.
  • [21] Griffith D.W.T. (1996). Synthetic Calibration and Quantitative Analysis of Gas-Phase FT-IR Spectra, Applied Spectroscopy, 50(1), 59-70.
  • [22] Jaakkola P.T., Vahlman T.A., Ross A.A., Saarinen P.E., Kauppinen J.K. (1998). On-line analysis of stack gas composition by a low resolution FT-IR gas analyser. Water, Air, and Soil Pollution, 101, 79-92.
  • [23] Briz S., de Castro A.J., Diez S., Lopez F., Schafer K. (2007). Remote sensing by open-path FTIR spectroscopy. Comparison of different analysis techniques applied to ozone and carbon monoxide detection. Journal of Quantitative Spectroscopy & Radiative Transfer, 103, 314-330.
  • [24] Rothman L. S., at all (2005). The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 96, 139-204.
  • [25] de Castro A.J., Lerma A.M., Lopez F., Guijarro M., Diez C., Hernando C., Madrigal J. (2007). Open-path Fourier transform infrared spectrometry characterization of low temperature combustion gases in biomass fuels. Infrared Physics & Technology, 51, 21-30.
  • [26] Wójcik W., Cięszczyk S., Golec T. (2010). Narrow-band spectra models for diagnostic of gases produced during the biomass production. L. Pawłowski, M. Dudzińska, A. Pawłowski (eds.). Environmental Engineering III, CRC Press, 597-601.
  • [27] Smith T.E.L., Wooster M.J., Tattaris M., Griffith D.W.T. (2011). Absolute accuracy and sensitivity analysis of OP-FTIR retrievals of CO2, CH4 and CO over concentrations representative of “clear air” and “polluted plumes”. Atmospheric Measurement Techniques, 4, 97-116.
  • [28] U. S. Environmental Protection Agency: Additional Fourier Transform Infrared (FTIR) Spectra. (January 2013). http://www.epa.gov/ttn/emc/ftir/addcas.html.
  • [29] Haselsteiner T., Erbel C., Kunze C., Spliethoff H. (2011). An in situ optical gas phase analysis approach for TGA: Its assessment and application. Applied Energy, 88, 5200-52007.
  • [30] Weissinger A., Fleckl T., Obernberger I. (2004). In situ FT-IR spectroscopic investigations of species form biomass fuels in a laboratory-scale combustor: the release of nitrogenous species. Combustion and Flame 137, 403-417.
  • [31] Fleckl T., Jager H., Obernberger I. (2002). Experimental verification of gas spectra calculated for high temperatures using the HITRAN/HITEMP database. Journal of Physics D: Applied Physics, 35, 3138-3144.
  • [32] Coleman M.D., Gardiner T.D. (2009). Sensitivity of model-based quantitative FTIR to instrumental and spectroscopic database error sources, Vibrational Spectroscopy, 51, 177-183.
  • [33] Naylor D.A., Tahic M.K. (2007). Apodizing functions for Fourier transform spectroscopy. J. Opt. Soc. Am. A 24(11), pp. 3644-3648.
  • [34] Okarma K. (2013). Constructed Polynomial Windows with High Attenuation of Sidelobes. Elektronika ir Elektrotechnika (Electronics and Electrical Engineering), 19(5), 57-60.
  • [35] Mroczka J., Szczuczyński D. (2010). Improved regularized solution of the inverse problem in turbidimetric measurements. Applied Optics, 49(24), 4591-4603.
  • [36] Mroczka J., Szczuczyński, D. (2012). Simulation research on improved regularized solution of inverse problem in spectral extinction measurements. Applied Optics, 51(11), 1715-1723.
  • [37] Garcia-Cuesta E., Briz S., Fernandez-Gomez I., de Castro A.J. (2007). Application of Neural Networks to Atmospheric Pollutants Remote Sensing. J. Mira J.R Alvares (Eds.). IWINAC 2007, Part II, Berlin: Springer-Verlag, 589-598.
  • [38] Sepman A.V., Den Blanken R., Schepers R., Goey L.P.H. (2009). Quantitative Fourier Transform Infrared Diagnostics of the Gas-Phase Composition Using the HITRAN Database and the Equivalent Width of the Spectral Features. Applied Spectroscopy 63(11), 1211-1222.
  • [39] Chen T., Martin E. (2007). The impact of temperature variations on spectroscopic calibration modelling: a comparative study. Journal of Chemometrics, 21, 198-207.
  • [40] Sulub Y., Small G.W. (2007). Quantitative determination of ethanol in heated plumes by passive Fourier transform infrared remote sensing measurement. Analyst, 132, 330-337.
  • [41] Fernandez-Gomez I., de Castro A.J., Guijarro M., Madrigal J., Aranda J.M., Diez C., Hernando C., Lopez F. (2011). Characterization of forest fuels in a Mass Loss Calorimeter by short open-path FTIR spectroscopy. Journal of Quantiative Spectroscopy & Radiative Transfer, 112, 519 530.
  • [42] Mroczka J. (2013). The cognitive process in metrology. Measurement, 46, 2896-2907.
  • [43] Hammer S., Griffith D.W., Konrad G., Vardag S., Caldow C., Levin I. (2012). Assesment of multi-species in-situ FTIR for precise atmospheric greenhouse gas observations. Atmospheric Measurement Techniques Discussions, 5, 3645-3692.
  • [44] Cięszczyk S. (2013). Sensors signal processing under influence of environmental disturbances. Przegląd Elektrotechniczny, 4, 129-131.
  • [45] Stelmachowski P., Sirotin S., Bazin P., Mauge F., Travert A. (2013). Speciation of adsorbed CO2 on metal oxides by a new 2-dimensional approach: 2D infrared inversion spectroscopy (2D IRIS). Phys. Chem. Chem. Phys., 15, 9335-9342.
  • [46] Esler M.B., Griffith D.W., Wilson S.R., Steele L.P. (2000). Precision Trace Gas Analysis by FT-IR Spectroscopy. 1. Simultaneous Analysis of CO2, CH4, N2O and CO in Air. Analytical Chemistry, 72(1), 206-215.
  • [47] Shao L., Griffiths P.R., Chu P.M., Vetter T.W. (2006). Quantiative Vapor-Phase Infared Spectrometry of Ammonia, Applied Spectroscopy 60(3), 254-260.
  • [48] Shao L., Liu B., Griffiths P.R., Leytem A.B. (2011). Using Multiple Calibration Sets to Improve the Quantitative Accuracy of Partial Least Squares (PLS) Regression on Open-Path Fourier Transform Infrared (OP/FT-IR) Spectra of Ammonia over Wide Concentration Ranges. Applied Spectroscopy, 65(7), 820-824.
  • [49] Daszykowski M., Serneels S., Kaczmarek K., Van Espen P., Croux C., Walczak B. (2007). TOMCAT: A MATLAB toolbox for multivariate calibration techniques. Chemometrics and Intelligent LaboratorySystems, 85, 269-277.
  • [50] Barman I., Dingari, N. C., Singh, G. P., Soares, J. S., Dasari, R. R., Smulko, J. M. (2012). Investigation of Noise-Induced Instabilities in Quantitative Biological Spectroscopy and Its Implications for Noninvasive Glucose Monitoring. Analytical chemistry, 84(19), 8149-8156.
  • [51] Kwan C., Schmera, G., Smulko, J. M., Kish, L. B., Heszler, P., Granqvist, C. G. (2008). Advanced agent identification with fluctuation-enhanced sensing. Sensors Journal, IEEE, 8(6), 706-713.
  • [52] Douhna L., Benoudjit N., Melgani F. (2012). A robust regression approach for spectrophotometric signal analysis. Journal of Chemometrics, 26, 400-405.
  • [53] Mendes-Moreira J., Soares, C., Jorge, A.M., Sousa, J.F.D. (2012). Ensemble approaches for regression: A survey. ACM Computing Surveys (CSUR), 45(1), 10.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3660aa93-8542-401f-a16d-bcdf7d043c0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.