PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the asymptotic formulas for perturbations in the eigenvalues of the Stokes equations due to the presence of small deformable inclusions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we provide a rigorous derivation of an asymptotic formula for the perturbation of eigenvalues associated to the Stokes eigenvalue problem with Dirichlet conditions and in the presence of small deformable inclusions. Taking advantage of the small sizes of the inclusions immersed in an incompressible Newtonian fluid having kinematic viscosity different from the background one, we show that our asymptotic formula can be expressed in terms of the eigenvalue in the absence of the inclusions and in terms of the viscous moment tensor (VMT).
Wydawca
Rocznik
Strony
149--164
Opis fizyczny
Bibliogr. 31 poz., 1 rys.
Twórcy
  • Department of Mathematics, Faculty of Sciences, Carthage University, Bizerte, Tunisia
  • Department of Mathematics, Faculty of Sciences, Carthage University, Bizerte, Tunisia
Bibliografia
  • [1] J. H. Albert, Genericity of simple eigenvalues for elliptic PDE’s, Proc. Amer. Math. Soc. 48 (1975), 413-418.
  • [2] Y. Amirat, G. A. Chechkin and R. R. Gadyl’shin, Asymptotics for eigenelements of Laplacian in domain with oscillating boundary: Multiple eigenvalues, Appl. Anal. 86 (2007), no. 7, 873-897.
  • [3] H. Ammari, E. Beretta, E. Francini, H. Kang and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case, J. Math. Pures Appl. (9) 94 (2010), no. 3, 322-339.
  • [4] H. Ammari, P. Garapon, H. Kang and H. Lee, A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements, Quart. Appl. Math. 66 (2008), no. 1, 139-175.
  • [5] H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements, Lecture Notes in Math. 1846, Springer, Berlin, 2004.
  • [6] H. Ammari, H. Kang, M. Lim and H. Zribi, Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2901-2922.
  • [7] H. Ammari and S. Moskow, Asymptotic expansions for eigenvalues in the presence of small inhomogeneities, Math. Methods Appl. Sci. 26 (2003), no. 1, 67-75.
  • [8] H. Ammari and F. Triki, Splitting of resonant and scattering frequencies under shape deformation, J. Differential Equations 202 (2004), no. 2, 231-255.
  • [9] H. Ammari and D. Volkov, Asymptotic formulas for perturbations in the eigenfrequencies of the full Maxwell equations due to the presence of imperfections of small diameter, Asymptot. Anal. 30 (2002), no. 3-4, 331-350.
  • [10] I. Babuška and J. Osborn, Eigenvalue problems, in: Handbook of Numerical Analysis. Vol. II, North-Holland, Amsterdam (1991), 641-787.
  • [11] E. Bonnetier, D. Manceau and F. Triki, Asymptotic of the velocity of a dilute suspension of droplets with interfacial tension, Quart. Appl. Math. 71 (2013), no. 1, 89-117.
  • [12] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2013.
  • [13] D. J. Cedio-Fengya, S. Moskow and M. S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Problems 14 (1998), no. 3, 553-595.
  • [14] C. Daveau, A. Khelifi and I. Balloumi, Asymptotic behaviors for eigenvalues and eigenfunctions associated to Stokes operator in the presence of small boundary perturbations, Math. Phys. Anal. Geom. 20 (2017), no. 2, Paper No. 13.
  • [15] S. Jia, H. Xie, X. Yin and S. Gao, Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods, Appl. Math. 54 (2009), no. 1, 1-15.
  • [16] A. Jouabi and A. Khelifi, Complete asymptotic behavior of eigenvalues and eigenfunctions for the Stokes operator in domains with highly oscillating boundaries, preprint.
  • [17] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer, New York, 1966.
  • [18] J. P. Kelliher, Eigenvalues of the Stokes operator versus the Dirichlet Laplacian in the plane, Pacific J. Math. 244 (2010), no. 1, 99-132.
  • [19] A. Khelifi, Asymptotic property and convergence estimation for the eigenelements of the Laplace operator, Appl. Anal. 86 (2007), no. 10, 1249-1264.
  • [20] M. Kohr, The interior Neumann problem for the Stokes resolvent system in a bounded domain in ℝn, Arch. Mech. (Arch. Mech. Stos.) 59 (2007), no. 3, 283-304.
  • [21] V. Kozlov, On the Hadamard formula for nonsmooth domains, J. Differential Equations 230 (2006), no. 2, 532-555.
  • [22] V. A. Kozlov and S. A. Nazarov, Asymptotics of the spectrum of the Dirichlet problem for the biharmonic operator in a domain with a deeply indented boundary, St. Petersburg Math. J. 22 (2011), no. 6, 941-983.
  • [23] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Fizmathiz, Moscow, 1961.
  • [24] J. Lagha, F. Triki and H. Zribi, Small perturbations of an interface for elastostatic problems, Math. Methods Appl. Sci. 40 (2017), no. 10, 3608-3636.
  • [25] J. H. Ortega and E. Zuazua, Generic simplicity of the eigenvalues of the Stokes system in two space dimensions, Adv. Differential Equations 6 (2001), no. 8, 987-1023.
  • [26] J. E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712-725.
  • [27] S. Ozawa, An asymptotic formula for the eigenvalues of the Laplacian in a three-dimensional domain with a small hole, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 243-257.
  • [28] S. Ozawa, Asymptotic property of an eigenfunction of the Laplacian under singular variation of domains—the Neumann condition, Osaka J. Math. 22 (1985), no. 4, 639-655.
  • [29] S. Ozawa, Eigenvalues of the Laplacian under singular variation of domains—the Robin problem with obstacle of general shape, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 6, 124-125.
  • [30] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1979.
  • [31] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University, New York, 1948.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-365ed1c3-5157-4f27-a256-208b505a0685
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.