PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Patterns, processes and models – an analytical review of current ambiguous interpretations of the evidence for pre-Pleistocene glaciations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Models (paradigms) and former interpretations have often been presupposed when conducting field research. In the 19th century diamictites were for the first time interpreted to have originated from ancient glaciations. These interpretations have to a large part prevailed in the geological community, although there has been much progress in the areas of sedimentology, glaciology and physical geography. The present work is an effort to find criteria which most clearly discriminate between geological features produced by different processes, mainly glaciation and mass flow, the latter predominantly sediment gravity flows. Geological features which have been interpreted to have formed by glaciation throughout pre-Pleistocene Earth history are compared to similar-appearing geological features formed by mass flow and tectonics, so as to uncover variations in the appearance between features resulting from these different processes. The starting point for this comparison is documentation of the appearance of Quaternary products of erosion and deposition, in order to discern the origin of older formations. It is shown that the appearance and origin of pavements, dropstones, valleys, small-scale landforms, surface microtextures and most other geological features may in some cases be equivocal, but in others the details are indicative of the process which generated the feature. Detailed geological field data which have been compiled by geologists from outcrops of pre-Pleistocene strata, more often than is considered in most papers, commonly point to a mass flow origin, mainly a sediment gravity flow origin, rather than a glaciogenic or- igin. A process of multiple working hypotheses or interpretations is therefore advocated, based mainly on a comparison of the appearance of features formed by different geological processes documented from different research disciplines. Instead of starting with current interpretations or models, this multiple working hypothesis or methodology helps to avoid confirmation bias and jumping to conclusions.
Czasopismo
Rocznik
Strony
139--166
Opis fizyczny
Bibliogr. 180 poz.
Twórcy
  • Umeå FoU AB, Vallmov 61, 903 52 Umeå, Sweden
Bibliografia
  • Al-Mufti, O.N. & Arnott, R.W.C., 2023. The origin of planar lamination in fine-grained sediment deposited by subaqueous sediment gravity flows. The Depositional Record 00, 1–19. https://doi.org/10.1002/dep2.257.
  • Ali, D.O., Spencer, A.M., Fairchild, I.J., Chew, K.J., Anderton, R., Levell, B.K., Hambrey, M.J., Dove, D. & Le Heron, D.P., 2018. Indicators of relative completeness of the glacial record of the Port Askaig Formation, Garvellach Islands, Scotland. Precambrian Research 319, 65–78, https://doi.org/10.1016/j.precamres.2017.12.005.
  • Allen, P., 1975. Ordovician glacials of the Central Sahara. [In:] Wright, A.E. & Moseley, F. (Eds), Ice Ages: Ancient and Modern. Seal House Press, Liverpool, pp. 275–286.
  • Amblas, D., Gerber, T.P., Canals, M., Pratson, L.F., Urgeles, R., Lastras, G. & Calafat, A.M., 2011. Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin. Geomorphology 130, 173–184, https://doi.org/10.1016/j.geomorph.2011.03.013.
  • Anderson, J.B., 1983. Ancient glacial-marine deposits: their spatial and temporal distribution. [In:] Molnia, B.F. (Ed.), Glacial-Marine Sedimentation, Plenum Press, New York, pp. 3–92
  • Andrews, G.D., McGrady, A.T., Brown, S.R. & Maynard, S.M., 2019. First description of subglacial megalineations from the late Paleozoic ice age in southern Africa. PLoS ONE 14, e0210673. https://doi.org/10.1371/journal.pone.0210673.
  • Atkins, C.B., 2003. Characteristics of striae and clast shape in glacial and non-glacial environments. Victoria University of Wellington.
  • Atkins, C.B., 2004. Photographic atlas of striations from selected glacial and non-glacial environments. Antarctic Data Series 28. Victoria University of Wellington.
  • Baas, J.H., Tracey, N.D. & Peakall, J., 2021. Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models. Journal of Sedimentary Research 91, 986–1009, https://doi.org/10.2110/jsr.2020.104.
  • Bechstädt, T., Jäger, H., Rittersbacher, A., Schweisfurth, B., Spence, G., Werner, G. & Boni, M., 2018. The Cryogenian Ghaub Formation of Namibia – New insights into Neoproterozoic glaciations. Earth-Science Reviews 177, 678–714. https://doi.org/10.1016/j.earscirev.2017.11.028.
  • Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M., 2017. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biology 15, e2000735. https://doi.org/10.1371/journal.pbio.2000735.
  • Bennett, M.R. & Bullard, J.E., 1991. Correspondence: Iceberg tool marks: An example from Heinabergsjökull, southeast Iceland. Journal of Glaciology 37, 181–183.
  • Biju-Duval, B., Deynoux, M. & Rognon, P., 1981. Late Ordovician tillites of the Central Sahara. [In:] Hambrey, M.J. & Harland, W.B. (Eds), Earth´s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp. 99–107.
  • Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.M., Andreev, A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V., Krivonogov, S.K., Lozhkin, A.V., MacDonald, G.M., Novenko, E.Y., Oksanen, P., Sapelko, T.V., Väliranta, M. & Vazhenina, L., 2009. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Science Reviews 28, 2445–2464. https://doi.org/10.1016/j.quascirev.2009.04.016.
  • Birks, H.J.B. & Willis, K.J., 2008. Alpines, trees, and refugia in Europe. Plant Ecology & Diversity 1, 147–160. https://doi.org/10.1080/17550870802349146.
  • Bischoff, W., 2002. Grauwacke-Steinbruch im oberen Innerstetal. https://www.karstwanderweg.de/publika/geotope/innerste/index.htm (downloaded, November 25, 2023).
  • Bjørlykke, K., 1967. The Eocambrian “Reusch Moraine” at Bigganjargga and the geology around Varangerfjord; Northern Norway. Norges Geologiske Undersøkelse 251, 18–44.
  • Blott, S.J. & Pye, K., 2012. Particle size scales and classification of sediment types based on particle size distributions: Review and recommended procedures. Sedimentology 59, 2071–2096. https://doi.org/10.1111/j.1365-3091.2012.01335.x.
  • Boulton, G.S. & Deynoux, M., 1981. Sedimentation in glacial environments and the identification of tills and tillites in ancient sedimentary sequences. Precambrian Research 15, 397–422.
  • Bouma, A.H., 1962. Sedimentology of some flysch deposits: A graphic approach to facies interpretation. Elsevier, Amsterdam, 168 pp.
  • Bronikowska, M., Pisarska-Jamroży, M. & van Loon, A.J.T., 2021. Dropstone deposition: Results of numerical process modeling of deformation structures, and implications for the reconstruction of the water depth in shallow lacustrine and marine successions. Journal of Sedimentary Research 91, 507–519. https://doi.org/10.2110/jsr.2020.111.
  • Bryan, M., 1983. Of shales and schists and ignimbrites, and other rocky things (a report on the talks given at the 1983 Conference at Bradford University). OUGS Journal 4, 31–53
  • Buatois, L.A., Netto, R.G. & Mángano, M.G., 2010. Ichnology of late Paleozoic postglacial transgressive deposits in Gondwana: Reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge. [In:] López-Gamundí, O.R. & Buatois, L.A. (Eds), Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468, pp. 149–173, https://doi.org/10.1130/2010.2468(07).
  • Bukhari, S., Eyles, N., Sookhan, S., Mulligan, R., Paulen, R., Krabbendam, M. & Putkinen, N., 2021. Regional subglacial quarrying and abrasion below hard-bedded palaeo-ice streams crossing the Shield–Palaeozoic boundary of central Canada: the importance of substrate control. Boreas, https://doi.org/10.1111/bor.12522.
  • Burr, D.M., Grier, J.A., McEwen, A.S. & Keszthelyi, L.P., 2002. Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159, 53–73.
  • Bussert, R., 2014. Depositional environments during the Late Palaeozoic ice age (LPIA) in northern Ethiopia, NE Africa. Journal of African Earth Sciences 99, 386–407. https://doi.org/10.1016/j.jafrearsci.2014.04.005.
  • Butler, R.W.H. & Tavarnelli, E., 2006. The structure and kinematics of substrate entrainment into high-concentration sandy turbidites: a field example from the Gorgoglione ´flysch´ of southern Italy. Sedimentology 53, 655–670, https://doi.org/10.1111/j.1365-3091.2006.00789.x.
  • Cardona, S., Wood, L.J., Dugan, B., Jobe, Z. & Strachan, L.J., 2020. Characterization of the Rapanui mass-transport deposit and the basal shear zone: Mount Messenger Formation, Taranaki Basin, New Zealand. Sedimentology 67, 2111–2148. https://doi.org.10.1111/sed.12697.
  • Chamberlin, T.C., 1888. The rock-scorings of the great ice invasions. [In:] Powell, J.W. (Ed.), U.S. Geol. Survey, Seventh Annual Report, 155–248. https://doi.org/10.3133/ar7.
  • Chen, X., Kuang, H., Liu, Y., Le Heron, D.P., Wang, Y., Peng, N., Wang, Z., Zhong, Q., Yu, H. & Chen, J., 2021. Revisiting the Nantuo Formation in Shennongjia, South China: A new depositional model and multiple glacial cycles in the Cryogenian. Precambrian Research 356, 106132. https://doi.org/10.1016/j.precamres.2021.106132.
  • Clapham, M.E. & Corsetti, F.A., 2005. Deep valley incision in the terminal Neoproterozoic (Ediacaran) Johnnie Formation, eastern California, USA: Tectonically or glacially driven? Precambrian Research 141, 154–164, https://doi.org/10.1016/j.precamres.2005.09.002.
  • Clark, P.U., 1991. Striated clast pavements: Products of deforming subglacial sediment? Geology 19, 530–533.
  • Coleman, A.P., 1908. The Lower Huronian ice age. Journal of Geology 16, 149–158.
  • Coles, R.J., 2014. The cross-sectional characteristics of glacial valleys and their spatial variability. Geography Department, University of Sheffield, 335 pp.
  • Crowell, J.C., 1957. Origin of pebbly mudstones. Bulletin of the Geological Society of America 68, 993–1010.
  • Cuneo, R.N., Isbell, J., Taylor, E.D. & Taylor, T.M., 1993. The Glossopteris flora from Antarctica: taphonomy and paleoecology. Comptes Rendus XII ICC-P 2, 13–40.
  • Dakin, N., Pickering, K.T., Mohrig, D. & Bayliss, N.J., 2013. Channel-like features created by erosive submarine debris flows: field evidence from the Middle Eocene Ainsa Basin, Spanish Pyrenees. Marine and Petroleum Geology 41, 62–71.
  • Del Cortona, A., Jackson, C.J., Bucchini, F., Van Bel, M., D’hondt, S., Škaloud, P., Delwiche, C.F., Knoll, A.H., Raven, J.A., Verbruggen, H., Vandepoele, K., De Clerck, O. & Leliaert, F., 2020, Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds: Proceedings of the National Academy of Sciences USA 117, 2551–2559. https://doi.org/10.1073/pnas.1910060117.
  • DeVore, M.L. & Pigg, K.B., 2020. The Paleocene-Eocene thermal maximum: plants as paleothermometers, rain gauges, and monitors. [In:] Martinetto, E., Tschopp, E. & Gastaldo, R. (Eds), Nature through time. Springer Textbooks in Earth Sciences, Geography and Environment, pp. 109–128. https://doi.org/10.1007/978-3-030-35058-1_4.
  • Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J. & Young, G.M. (Eds), 1994. Earth´s glacial record. Cambridge University Press, 266 pp. https://doi.org/10.1017/CBO9780511628900.019.
  • Deynoux, M., 1985a. Glacial record. Palaeogeography, Palaeoclimatology, Palaeoecology 51. 451 pp., https://doi.org/10.1016/0031-0182(85)90082-3.
  • Deynoux, M., 1985b. Terrestrial or waterlain glacial diamictites? Three case studies from the Late Precambrian and Late Ordovician glacial drifts in West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 97–141, https://doi.org/10.1016/0031-0182(85)90082-3.
  • Dietrich, P., Griffis, N.P., Le Heron, D.P., Montañez, I.P., Kettler, C., Robin, C. & Guillocheau, F., 2021. Fjord network in Namibia: A snapshot into the dynamics of the late Paleozoic glaciation. Geology 49, https://doi.org/10.1130/G49067.1
  • Domack, E.W. & Hoffman, P.F., 2011. An ice grounding-line wedge from the Ghaub glaciation (635 Ma) on the distal foreslope of the Otavi carbonate platform, Namibia, and its bearing on the snowball Earth hypothesis. GSA Bulletin 123, 1448–1477, https://doi.org/10.1130/B30217.1.
  • Dowdeswell, J.A. & Hogan, K.A., 2016. Huge iceberg ploughmarks and associated corrugation ridges on the northern Svalbard shelf. [In:] Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K. & Hogan, K.A. (Eds), Atlas of submarine glacial landforms: Modern, Quaternary and ancient. Geological Society, London, Memoirs 46, pp. 269–270, https://doi.org/10.1144/M46.4.
  • Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K. & Hogan, K.A., 2016a. The variety and distribution of submarine glacial landforms and implications for ice-sheet reconstruction. [In:] Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K. & Hogan, K.A. (Eds), Atlas of submarine glacial landforms: Modern, Quaternary and ancient. Geological Society, London, Memoirs, 46, pp. 519–552, https://doi.org/10.1144/M46.183.
  • Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K. & Hogan, K.A. (Eds), 2016b. Atlas of submarine glacial landforms: Modern, Quaternary and ancient. Geological Society, London, Memoirs 46, 618 pp, https://doi.org/10.1144/M46.
  • Draganits, E., Schlaf, J., Grasemann, B. & Argles, T., 2008. Giant submarine landslide grooves in the Neoproterozoic/Lower Cambrian Phe Formation, northwest Himalaya: Mechanisms of formation and palaeogeographic implications. Sedimentary Geology 205, 126–141, https://doi.org/10.1016/j.sedgeo.2008.02.004.
  • Dufresne, A., Geertsema, M., Shugar, D.H., Koppes, M., Higman, B., Haeussler, P.J., Stark, C., Venditti, J.G., Bonno, D., Larsen,C., Gulick, S.P.S., McCall, N., Walton, M., Loso, M.G. & Willis, M.J., 2018. Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska. Sedimentary Geology 364, 302–318. https://doi.org/10.1016/j.sedgeo.2017.10.004.
  • Dufresne, A., Zernack, A., Bernard, K., Thouret, J.-C. & Roverato, M., 2021. Sedimentology of volcanic debris avalanche deposits. [In:] Roverato, M., Dufresne, A. & Procter, J. (Eds), Volcanic debris avalanches. Advances in volcanology. Springer, pp. 175–210. https://doi.org/10.1007/978-3-030-57411-6_8.
  • Enos, P., 1969. Anatomy of flysch. Journal of Sedimentary Petrology 39, 680–723. https://doi.org/10.1306/74D71CF8-2B21-11D7-8648000102C1865D.
  • Evans, D.J.A., Roberts, D.H. & Evans, S.C., 2016. Multiple subglacial till deposition: A modern exemplar for Quaternary palaeoglaciology. Quaternary Science Reviews 145, 183–203. https://doi.org/10.1016/j.quascirev.2016.05.029.
  • Eyles, C.H. & Eyles, N., 1989. The Upper Cenozoic White River “tillites” of Southern Alaska: subaerial slope and fan-delta deposits in a strike-slip setting. GSA Bulletin 101, 1091–1102.
  • Eyles, C.H. & Eyles, N., 2000. Subaqueous mass flow origin for Lower Permian diamictites and associated facies of the Grant Group, Barbwire Terrace, Canning Basin, Western Australia. Sedimentology 47, 343–356.
  • Eyles, N., 1990. Marine debris flows: Late Precambrian “tillites” of the Avalonian-Cadomian orogenic belt. Palaeogeography, Palaeoclimatology, Palaeoecology 79, 73–98.
  • Eyles, N., 1993. Earth´s glacial record and its tectonic setting. Earth-Science Reviews 35, 1–248.
  • Eyles, N. & Clark, B.M., 1985. Gravity induced soft sediment deformation in glaciomarine sequences of the Upper Proterozoic Port Askaig Formation, Scotland. Sedimentology 32, 789–814. https://doi.org/10.1111/j.1365-3091.1985.tb00734.x.
  • Eyles, N. & Januszczak, N., 2007. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: where is the evidence of global glaciation? Basin Research 19, 179–198.
  • Eyles, N., Eyles, C.H. & Gostin, V.A. 1997. Iceberg rafting and scouring in the Early Permian Shoalhaven Group of New South Wales, Australia: Evidence of Heinrich-like events? Palaeogeography, Palaeoclimatology, Palaeoecology 136, 1–17. https://doi.org/10.1016/S0031-0182(97)00094-1.
  • Eyles, N., Moreno, L.A. & Sookhan, S., 2018. Ice streams of the Late Wisconsin Cordilleran Ice Sheet in western North America. Quaternary Science Reviews 179, 87–122. https://doi.org/10.1016/j.quascirev.2017.10.027.
  • Fielding, C.R., Frank, T.D. & Birgenheier, L.P., 2023. A revised, late Palaeozoic glacial time-space framework for eastern Australia, and comparisons with other regions and events. Earth-Science Reviews 236, 104263. https://doi.org/10.1016/j.earscirev.2022.104263.
  • Figueiredo, M.F. & Babinski, M., 2014. The Cryogenian and Ediacaran records from the Amazon palaeocontinent. [In:] Rocha, R., Pais, J., Kullberg, J. & Finney, S. (Eds), STRATI 2013, Springer Geology, 723–728. https://doi.org/10.1007/978-3-319-04364-7_136
  • Frakes, L.A., 1979. Climates through geologic time. Elsevier, Amsterdam, 304 pp.
  • Freitas, B.T., Warren, L.V., Boggiani, P.C., De Almeida, R.P. & Piacentini, T., 2011. Tectono-sedimentary evolution of the Neoproterozoic BIF-bearing Jacadigo Group, SW Brazil. Sedimentary Geology 238, 48–70. https://doi.org/10.1016/j.sedgeo.2011.04.001.
  • Gales, J.A., Leat, P.T., Larter, R.D., Kuhn, G., Hillenbrand, C.-D., Graham, A.G.C., Mitchell, N.C., Tate, A.J., Buys, G.B. & Jokat W., 2014. Large-scale submarine landslides, channel and gully systems on the southern Weddell Sea margin, Antarctica. Marine Geology 348, 73–87. https://doi.org/10.1016/j.margeo.2013.12.002.
  • Gastaldo, F.A., Bamford, M., Calder, J., DiMichele, W.A., Iannuzzi, R., Jasper, A., Kerp, H., McLoughlin, S., Opluštil, S., Pfefferkorn, H.W., Rößler, R. & Wang, J., 2020a. The non-analog vegetation of the Late Paleozoic icehouse–hothouse and their coal-forming forested environments. [In:] Martinetto, E., Tschopp, E. & Gastaldo, R. (Eds), Nature through time. Springer Textbooks in Earth Sciences, pp. 291–316. https://doi.org/10.1007/978-3-030-35058-1_12.
  • Gastaldo, F.A., Bamford, M., Calder, J., DiMichele, W.A., Iannuzzi, R., Jasper, A., Kerp, H., McLoughlin, S., Opluštil, S., Pfefferkorn, H.W., Rößler, R. & Wang, J., 2020b. The coal farms of the Late Paleozoic. [In:] Martinetto, E., Tschopp, E. & Gastaldo, R. (Eds), Nature through time. Springer Textbooks in Earth Sciences, pp. 317–343. https://doi.org/10.1007/978-3-030-35058-1_13.
  • Georgiopoulou, A., Masson, D.G, Wynn, R.B. & Krastel, S., 2010. Sahara Slide: Age, initiation, and processes of a giant submarine slide. Geochemistry, Geophysics, Geosystems 11, Q07014. https://doi.org/10.1029/2010GC003066.
  • Ghienne, J.-F., 2003. Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology 189, 117–145.
  • Gibson, T.M., Shih, P.M., Cumming, V,M., Fischer, W.W., Crockford, P.W., Hodgskiss, M.S.W., Wörndle, S., Creaser, R.A., Rainbird, R.H., Skulski, T.M. & Halverson, G.P., 2018. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138. https://doi.org/10.1130/G39829.1.
  • Giddings, J.A., Wallace, M.W., Haines, P.W. & Mornane, K., 2010. Submarine origin for the Neoproterozoic Wonoka canyons, South Australia. Sedimentary Geolology 223, 35–50.
  • Götz, A.E., Ruckwied, K. & Wheeler, A., 2018. Marine flooding surfaces recorded in Permian black shales and coal deposits of the Main Karoo Basin (South Africa): implications for basin dynamics and cross-basin correlation. International Journal of Coal Geology 190, 178–190. https://doi.org/10.1016/j.coal.2017.10.014.
  • Gupta, S., Collier, J.S., Palmer-Felgate1, A. & Graeme Potter, G., 2007. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448, 342–346.
  • Gupta, S., Collier, J.S., Garcia-Moreno, D., Oggioni, F., Trentesaux, A., Vanneste, K., De Batist, M., Camelbeek, T., Potter, G., Van Vliet-Lanoe, B. & Arthur, J.C.R., 2017. Two-stage opening of Dover Strait and the origin of island Britain. Nature Communications 8, 1–12.
  • Hambrey, M.J. & Harland, W.B. (Eds), 1981a. Earth´s pre-Pleistocene glacial record. Cambridge University Press, 1004 pp.
  • Hambrey, M.J. & Harland, W.B., 1981b. Criteria for the identification of glacigenic deposits. [In:] Hambrey, M.J. & Harland, W.B. (Eds), Earth´s pre-Pleistocene glacial record. Cambridge University Press, 4–20.
  • Hancox, P.J. & Götz, A.E., 2014. South Africa’s coalfields – A 2014 perspective. International Journal of Coal Geology 132, 170–254. http://dx.doi.org/10.1016/j.coal.2014.06.019.
  • Hicock, S.R., 1991. On subglacial stone pavements in till. Journal of Geology 99, 607–619.
  • Hodgson, D.M., Brooks, H.L., Ortiz-Karpf, A., Spychala, Y., Lee, D.R. & Jackson, C.A.-L., 2018. Entrainment and abrasion of megaclasts during submarine landsliding and their impact on flow behavior. [In:] Lintern, D.G., Mosher, D.C., Moscardelli, L.G., Bobrowsky, P.T., Campbell, C., Chaytor, J.D., Clague, J.J., Georgiopoulou, A., Lajeunesse, P., Normandeau, A., Piper, D.J.W., Scherwath, M., Stacey, C. & Turmel, D. (Eds), Subaqueous mass movements and their consequences: Assessing geohazards, environmental implications and economic significance of subaqueous landslides. Geological Society, London, Special Publications 477, 223–240. https://doi.org/10.1144/SP477.26.
  • Hoffmann, C., 2016. Charakteristische Merkmale klastischer Sedimente in Turbiditen innerhalb der Clausthaler Kulmfaltenzon [Characteristic features of clastic sediments in turbidites within the Clausthal Kulmfaltenzone]. [In:] Friedel, C.-H. & Leiss, B. (Eds), Harzgeologie 2016. 5. Workshop Harzgeologie - Kurzfassungen und Exkursionsführer. Contributions to Geosciences 78, 79–84.
  • Hoffman, P.F., 2011. A history of Neoproterozoic glacial geology, 1871–1997. [In:] Arnaud, E., Halverson, G.P. & Shields-Zhou, G. (Eds): The Geological Record of Neoproterozoic Glaciations, vol. 36. Geological Society, London, Memoirs, pp. 17e37, https://doi.org/10.1144/.
  • Hoffman, P.F., Halverson, G.P., Schrag, D.P., Higgins, J.A., Domack, E.W., Macdonald, F.A., Pruss, S.B., Blättler, C.L., Crockford, P.W., Hodgin, E.B., Bellefroid, E.J., Johnson, B.W., Hodgskiss, M.S.W., Lamothe, K.G., LoBianco, S.J.C., Busch, J.F., Howes, B.J., Greenman, J.W. & Nelson, L.L., 2021. Snowballs in Africa: Sectioning a long-lived Neoproterozoic carbonate platform and its bathyal foreslope (NW Namibia). Earth-Science Reviews 219, 103616. https://doi.org/10.1016/j.earscirev.2021.103616.
  • Isbell, J.L., 2010. Environmental and paleogeographic implications of glaciotectonic deformation of glaciomarine deposits within Permian strata of the Metschel Tillite, southern Victoria Land, Antarctica. [In:] López-Gamundí, O.R. & Buatois, L.A. (Eds), Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468, pp. 81–100. https://doi.org/10.1130/2010.2468(03).
  • Isbell, J.L., Fedorchuk, N.D., Rosa, E.L.M., Goso, C. & Alonso-Muruaga, P.J., 2023. Reassessing a glacial landscape developed during terminal glaciation of the Late Paleozoic Ice Age in Uruguay. Sedimentary Geology 451, 106399. https://doi.org/10.1016/j.sedgeo.2023.106399.
  • Isbell, J.L., Vesely, F.F., Rosa, E.L.M., Pauls, K.N., Fedorchuk, N.D., Ives, L.R.W., McNall, N.B., Litwin, S.A., Borucki, M.K., Malone, J.E. & Kusick, A.R., 2021. Evaluation of physical and chemical proxies used to interpret past glaciations with a focus on the late Paleozoic Ice Age. Earth-Science Reviews 221, 103756. https://doi.org/10.1016/j.earscirev.2021.103756.
  • Iverson, N.R., 1991. Morphology of glacial striae: Implications for abrasion of glacier beds and fault surfaces. GSA Bulletin 103, 1308–1316.
  • Kalińska, E., Lamsters, K., Karušs, J., Krievāns, M., Rečs, A. & Ješkins, J., 2021. Does glacial environment produce glacial mineral grains? Pro- and supra-glacial Icelandic sediments in microtextural study. Quaternary International 617, 101–111. https://doi.org/10.1016/j.quaint.2021.03.029.
  • Kalińska-Nartiša, E., Woronko, B. & Ning, W., 2017. Microtextural inheritance on quartz sand grains from Pleistocene periglacial environments of the Mazovian Lowland, Central Poland. Permafrost and Periglacial Processes 28, 741–756. https://doi.org/10.1002/ppp.1943.
  • Keller, M., Hinderer, M., Al-Ajmi, H. & Rausch, R., 2011. Palaeozoic glacial depositional environments of SW Saudi Arabia: process and product. Geological Society, London, Special Publications 354, 129–152. https://doi.org/10.1144/SP354.8 .
  • Kennedy K. & Eyles, N., 2019. Subaqueous debrites of the Grand Conglomérat Formation, Democratic Republic of Congo: A model for anomalously thick Neoproterozoic “glacial” diamictites. Journal of Sedimentary Research 89, 935–955. https://doi.org/10.2110/jsr.2019.51.
  • Kennedy, K. & Eyles, N., 2021. Syn-rift mass flow generated ´tectonofacies´ and ´tectonosequences´ of the Kingston Peak Formation, Death Valley, California, and their bearing on supposed Neoproterozoic panglacial climates. Sedimentology 68, 352–381. https://doi.org/10.1111/sed.12781.
  • Kneller, B., Dykstra, M., Fairweather, L. & Milana, J.P., 2016. Mass-transport and slope accommodation: Implications for turbidite sandstone reservoirs. AAPG Bulletin 100, 213–235. https://doi.org/10.1306/09011514210.
  • Kneller, B.C., Edwards, D., McCaffrey, W.D. & Moore, R., 1991. Oblique reflection of turbidity currents. Geology 14, 250–252.
  • Kochhann, M.V.L., Cagliari, J., Kochhann, K.G.D. & Franco, D.R., 2020. Orbital and millennial-scale cycles paced climate variability during the Late Paleozoic Ice Age in the southwestern Gondwana. Geochemistry, Geophysics, Geosystems 21, https://doi.org/10.1029/2019GC008676.
  • Krabbendam, M. & Glasser, N.F., 2011. Glacial erosion and bedrock properties in NW Scotland: Abrasion and plucking, hardness and joint spacing. Geomorphology 130, 374–383, https://doi.org/10.1016/j.geomorph.2011.04.022.
  • Kraft, R.P. & Vesely, F.F., 2023. Distinguishing different classes of mass-transport deposits in LPIA strata exposed in eastern Paraná Basin, Brazil. Journal of South American Earth Sciences 128, 104434, https://doi.org/10.1016/j.jsames.2023.104434.
  • Krüger, J., 1984. Clasts with stoss-lee form in lodgement tills: a discussion. Journal of Glaciology 30: 241–243.
  • Kumar, P.C., Omosanya, K.O., Eruteya, O.E. & Sain, K., 2021. Geomorphological characterization of basal flow markers during recurrent mass movement: A case study from the Taranaki Basin, offshore New Zealand. Basin Research, 33:1–25. https://doi.org/10.1111/bre.12560.
  • Kut, A.A.,Woronko, B., Spektor, V.V. & Klimova, I.V., 2021. Grain-surface microtextures in deposits affected by periglacial conditions (Abalakh High-Accumulation Plain, Central Yakutia, Russia). Micron 146, 103067. https://doi.org/10.1016/j.micron.2021.103067.
  • Lamb, M.P., 2008. Formation of amphitheater-headed canyons. University of California, Berkeley, 311 pp.
  • Lamb, M.P., Mackey, B.H. & Farley, K.A., 2014. Amphitheaterheaded canyons formed by megaflooding at Malad Gorge, Idaho. PNAS, 111, 57e62, https://doi.org/10.1073/.
  • Le Heron, D.P., 2016. The Hirnantian glacial landsystem of the Sahara: a meltwater-dominated system. [In:] Dowdeswell, J.A., Canals, M., Jakobsson, M., Todd, B.J., Dowdeswell, E.K. & Hogan, K.A. (Eds), Atlas of submarine glacial landforms: Modern, Quaternary and ancient. Geological Society, London, Memoirs 46, 509–516. http://doi.org/10.1144/M46.151.
  • Le Heron, D.P., 2018. An exhumed Paleozoic glacial landscape in Chad. Geology 46, 91–94. https://doi.org/10.1130/G39510.1.
  • Le Heron, D.P., Busfield, M.E. & Kettler, C., 2021a. Ice-rafted dropstones in “postglacial” Cryogenian cap carbonates: Geology 49, 263–267. https://doi.org/10.1130/G48208.1.
  • Le Heron, D.P., Tofaif, S. & Melvin, J., 2018. The Early Palaeozoic glacial deposits of Gondwana: overview, chronology, and controversies. [In:] Menzies, J. & van der Meer, J.J.M. (Eds), Past glacial environments. Elsevier, Amsterdam, pp. 47–73. https://doi.org/10.1016/B978-0-08-100524-8.00002-6.
  • Le Heron, D.P., Busfield, M.E., Chen, X., Corkeron, M., Davies, B.J., Dietrich, P., Ghienne. J.-F., Kettler, C., Scharfenberg, L., Vandyk, T.M. & Wohlschlägl, R., 2022a. New perspectives on glacial geomorphology in Earth’s deep time record. Frontiers in Earth Science 10, 870359, https://doi.org/10.3389/feart.2022.870359.
  • Le Heron, D.P., Busfield, M.E., Smith, A.J.B. & Wimmer, S., 2022b. A grounding zone wedge origin for the Palaeoproterozoic Makganyene Formation of South Africa. Frontiers in Earth Science 10, 905602, https://doi.org/10.3389/feart.2022.905602.
  • Le Heron, D.P., Craig, J., Sutcliffe, O., Whittington, R., 2006. Late Ordovician glaciogenic reservoir heterogeneity: an example from the Murzuq Basin, Libya. Marine and Petroleum Geology 23, 655–677.
  • Le Heron, D.P., Heninger, M., Baal, C. & Bestmann, M., 2020. Sediment deformation and production beneath soft-bedded Palaeozoic ice sheets. Sedimentary Geology 408, 105761. https://doi.org/10.1016/j.sedgeo.2020.105761.
  • Le Heron, D.P, Sutcliffe, O.E., Whittington, R.J. & Craig, J., 2005. The origins of glacially related soft-sediment deformation structures in Upper Ordovician glaciogenic rocks: implication for ice-sheet dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology 218, 75–103.
  • Le Heron, D.P., Tofaif, S, Vandyk, T. & Ali, D.O., 2017. A diamictite dichotomy: Glacial conveyor belts and olistostromes in the Neoproterozoic of Death Valley, California, USA. Geology 45, 31–34.
  • Le Heron, D.P., Kettler, C., Griffis, N.P., Dietrich, P., Montañez, I.P., Osleger, D.A., Hofmann, A, Douillet, G. & Mundil, R., 2021b. The Late Palaeozoic Ice Age unconformity in southern Namibia viewed as a patchwork mosaic. Depositional Record 8,1–17, https://doi.org/10.1002/dep2.163.
  • Leask, H.J., Wilson, L. & Mitchell, K.L., 2007. Formation of Mangala Valles outflow channel, Mars: Morphological development and water discharge and duration estimates. Journal of Geophysical Research 112, E08003, https://doi.org/10.1029/2006JE002851.
  • Lindsay, J.F., 1968. The development of clast fabric in mudflows. Journal of Sedimentary Petrology 38, 1242–1253.
  • López-Gamundí, O.R., 2010. Transgressions related to the demise of the Late Paleozoic Ice Age: Their sequence stratigraphic context. [In:] López-Gamundí, O.R. & Buatois, L.A. (Eds), Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geological Society of America Special Paper 468, pp. 1–35, https://doi.org/10.1130/2010.2468(01).
  • López-Gamundí, G., Limarino, C.O., Isbell, J.L., Pauls, K., Césari, S.N. & Alonso-Muruaga, P.J., 2021. The late Paleozoic Ice Age along the southwestern margin of Gondwana: Facies models, age constraints, correlation and sequence stratigraphic framework. Journal of South American Earth Sciences 107, 103056, https://doi.org/10.1016/j.jsames.2020.103056.
  • Lowe, D.R., 1982. Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology 52, 279–297.
  • Macdonald, H.A., Wynn, R.B., Huvenne, V.A.I., Peakall, J., Masson, D.G., Weaver, P.P.E. & McPhail, S.D., 2011. New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin. Geosphere 7, 845–867, https://doi.org/10.1130/GES00611.1.
  • Mahaney, W.C., 2002. Atlas of sand grain surface textures and applications. Oxford University Press, New York, 237 pp.
  • Major, J.J., Pierson, T.C. & Scott, K.M., 2005. Debris flows at Mount St. Helens, Washington, USA. [In:] Jakob, M. & Hungr, O. (Eds), Debris-flow hazards and related phenomena. Praxis/Springer, Berlin/Heidelberg, pp. 685–731.
  • Martin, H., Porada, H. & Walliser, O.H., 1985. Mixtite deposits of the Damara sequence, Namibia. Problems of interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology 51, 159–196.
  • Matys Grygar, T., 2019. Millennial-scale climate changes manifest Milankovitch combination tones and Hallstatt solar cycles in the Devonian greenhouse world: Comment. Geology 47, e487, https://doi.org/10.1130/G46452C.1.
  • Mays, C., Vajda, V., Frank, T.D., Fielding, C.R., Nicoll, R.S., Tevyaw, A.P. & McLoughlin, S., 2020. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bulletin 132, 1489–1513, https://doi.org/10.1130/B35355.1.
  • Menard, H.W., 1955. Deep-sea channels, topography, and sedimentation. AAPG Bulletin 39, 236–255.
  • Milana, J.P. & Di Pasquo, M., 2019. New chronostratigraphy for a lower to upper Carboniferous strike-slip basin of W-Precordillera (Argentina): Paleogeographic, tectonic and glacial importance. Journal of South American Earth Sciences 96, 102383, https://doi.org/10.1016/j.jsames.2019.102383.
  • Mitchell, N.C., 2006. Morphologies of knickpoints in submarine canyons. GSA Bulletin 18, 589–605, https://doi.org/10.1130/B25772.1.
  • Molén, M.O., 2014. A simple method to classify diamicts by scanning electron microscope from surface microtextures. Sedimentology 61, 2020–2041, https://doi.org/10.1111/sed.12127.
  • Molén, M.O., 2017. The origin of Upper Precambrian diamictites; Northern Norway: A case study applicable to diamictites in general. Geologos 23, 163–181, https://doi.org/10.1515/logos-2017-0019.
  • Molén, M.O., 2021. Field evidence suggests that the Palaeoproterozoic Gowganda Formation in Canada is non-glacial in origin. Geologos 27, 73–91, https://doi.org/10.2478/logos-2021-0009.
  • Molén, M.O., 2023a. Glaciation-induced features or sediment gravity flows - An analytic review. Journal of Palaeogeography 12, 487–545, https://doi.org/10.1016/j.jop.2023.08.002.
  • Molén, M.O., 2023b. Comment to: Detecting upland glaciation in Earth’s pre-Pleistocene record. Frontiers in Earth Science 11, 1120975, https://doi.org/10.3389/feart.2023.1120975.
  • Molén, M.O., 2023c. Response to: Response: commentary: detecting upland glaciation in Earth’s pre-Pleistocene record. (Submitted.)
  • Molén, M.O., 2024. Geochemical proxies: Paleoclimate or paleoenvironment? Geosystems and Geoenvironment 3, 100238, https://doi.org/10.1016/j.geogeo.2023.100238.
  • Molén, M.O. & Smit, J.J., 2022. Reconsidering the glaciogenic origin of Gondwana diamictites of the Dwyka Group, South Africa. Geologos 28, 83–113, https://doi.org/10.2478/logos-2022-0008.
  • Moncrieff, A.C.M. & Hambrey, M.J., 1990. Marginal-marine glacial sedimentation in the Late Precambrian succession of east Greenland. [In:] Dowdeswell, J.A. & Scource, J.D. (Eds), Glacimarine environments: Processes and sediments. Geological Society, London, Spec. Publ. 53, pp. 387–410.
  • Moscardelli, L., Wood, L. & Mann, P., 2006. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin 90, 1059–1088, https://doi.org/10.1306/02210605052.
  • Neuendorf, K.K.E., Mehl, J.P.Jr. & Jackson, J.A. (Eds), 2005. Glossary of geology. American Geological Institute, Alexandria, 779 pp.
  • Normandeau, A., Lajeunesse, P. & St-Onge, G., 2015. Submarine canyons and channels in the Lower St. Lawrence Estuary (Eastern Canada): Morphology, classification and recent sediment dynamics. Geomorphology 241, 1–18, https://doi.org/10.1016/j.geomorph.2015.03.023.
  • Nugraha, H.D., Jackson A.-L., Johnson, H.D. & Hodgson, D.A., 2020. Lateral variability in strain along the toewall of a mass transport deposit: a case study from the Makassar Strait, offshore Indonesia. Journal of the Geological Society 177, 1261–1279, https://doi.org/10.1144/jgs2020-071.
  • Nwoko, J., Kane, I. & Huuse, M., 2020a. Megaclasts within mass-transport deposits: their origin, characteristics and effect on substrates and succeeding flows. Geological Society, London, Special Publications 500, 515–530. https://doi.org/10.1144/SP500-2019-146.
  • Nwoko, J., Kane, I. & Huuse, M., 2020b. Mass transport deposit (MTD) relief as a control on post-MTD sedimentation: Insights from the Taranaki Basin, offshore New Zealand. Marine and Petroleum Geology 120, 104489, https://doi.org/10.1016/j.marpetgeo.2020.104489.
  • Ogata, K., Festa, A., Pini, G.A., Pogačnik, Ž. & Lucente, C.C., 2019. Substrate deformation and incorporation in sedimentary mélanges (olistostromes): Examples from the northern Apennines (Italy) and northwestern Dinarides (Slovenia). Gondwana Research 74, 101–125.
  • Ortiz-Karpf, A., Hodgson, D.M., Jackson, C.A.-L. & McCaffrey, W.D., 2017. Influence of seabed morphology and substrate composition on mass-transport flow processes and pathways: insights from the Magdalena Fan, offshore Colombia. Journal of Sedimentary Research 87, 189–209, https://doi.org/10.2110/jsr.2017.10.
  • Passchier, S., Hansen, M.A. & Rosenberg, J., 2021, Quartz grain microtextures illuminate Pliocene periglacial sand fluxes on the Antarctic continental margin. The Depositional Record 7, 564–581, https://doi.org/10.1002/dep2.157.
  • Pauls, K.N., Isbell, J.L., McHenry, L., Limarino, C.O., Moxness, L.D. & Schencman, L.J., 2019. A paleoclimatic reconstruction of the Carboniferous-Permian paleovalley fill in the eastern Paganzo Basin: Insights into glacial extent and deglaciation of southwestern Gondwana. Journal of South American Earth Sciences 95, 102236, https://doi.org/10.1016/j.jsames.2019.102236.
  • Peakall, J., Best, J., Baas, J.H., Hodgson, D.M., Clare, M.A., Talling, P.J., Dorrell, R.M. & Lee, D.R., 2020. An integrated process-based model of flutes and tool marks in deep-water environments: Implications for palaeohydraulics, the Bouma sequence and hybrid event beds. Sedimentology 67, 1601–1666, https://doi.org/10.1111/sed.12727.
  • Pehlivan, V., 2019. Slope channels on an active margin: A 3D study of the variability, occurrence, and proportions of slope channel geomorphology in the Taranaki Basin, New Zealand. Colorado School of Mines, Golden.
  • Pickering, K.T., Underwood, M.B. & Taira, A., 1992. Open-ocean to trench turbidity-current flow in the Nankai Trough: flow collapse and reflection. Geology 20, 1099–1102.
  • Plafker, G., Richter, D.H. & Hudson, T., 1977. Reinterpretation of the origin of inferred Tertiary tillite in the northern Wrangell Mountains, Alaska. U.S. Geological Survey Circular 751-B, B52-B54.
  • Plescia, J.B., 2003. Cerberus Fossae, Elysium, Mars: a source for lava and water. Icarus 164, 79–95.
  • Puga Bernabéu, Á., Webster, J.M., Beaman, R.J., Thran, A., López Cabrera, J., Hinestrosa, G. & Daniell, J., 2020. Submarine landslides along the mixed siliciclastic carbonate margin of the great barrier reef (offshore Australia). [In:] Ogata, K., Festa, A.& Pini, G.A. (Eds), Submarine landslides: Subaqueous mass transport deposits from outcrops to seismic profiles. Geophysical Monograph 246, American Geophysical Union, pp. 313–337, https://doi.org/10.1002/9781119500513.ch19.
  • Robinson, J.E., Bacon, C.R., Major, J.J., Wright, H.M. & Vallance, J.M., 2017. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon - Implications for deposition and surface modification. Journal of Volcanology and Geothermal Research 342, 61–78.
  • Rodrigues, M.C.N., Trzaskos, B., Alsop, G.I. & Vesely, F.F., 2020. Making a homogenite: An outcrop perspective into the evolution of deformation within mass-transport deposits. Marine and Petroleum Geology 112, 104033, https://doi.org/10.1016/j.marpetgeo.2019.104033.
  • Talling, P.J., Wynn, R.B., Masson, D.G., Frenz, M., Cronin, B.T., Schiebel, R., Akhmetzhanov, A.M., Dallmeier-Tiessen, S., Benetti, S., Weaver, P.P.E., Georgiopoulou, A., Zühlsdorff, C. & Amy, L.A., 2007. Onset of submarine debris flow deposition far from original giant landslide. Nature 450, 541–544.
  • Thomas, G.S.P. & Connell, R.J., 1985. Iceberg drop, dump and grounding structures from Pleistocene glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology 55, 243–249, https://doi.org/10.1306/212F8689-2B24-11D7-8648000102C1865D.
  • Thompson, N.D., 2009. Distinct element numerical modelling of volcanic debris avalanche emplacement geomechanics. Bournemouth University, Bournemouth.
  • Tipper, J.C., Sach, V.J. & Heizmann, E.P.J., 2003. Loading fractures and Liesegang laminae: new sedimentary structures found in the north-western North Alpine Foreland Basin (Oligocene–Miocene, south-west Germany). Sedimentology 50, 791–813, https://doi.org/10.1046/j.1365-3091.2003.00578.x.
  • Tripathy, G., Goswami, S. & Das, P.P., 2021. Late Permian species diversity of the genus Glossopteris in and around Himgir, Ib River Basin, Odisha, India, with a clue on palaeoclimate and palaeoenvironment. Arabian Journal of Geosciences 14, 703, https://doi.org/10.1007/s12517-021-07019-0.
  • Ui, T., 1989. Discrimination between debris avalanche and other volcaniclastic deposits. [In:] Latter, J.H. (Ed.), Volcanic hazards. Springer, Berlin, pp. 201–209.
  • Valdez Buso, V., Milana, J.P., di Pasquo, M. & Aburto, J.E., 2021. The glacial paleovalley of Vichigasta: Paleogeomorphological and sedimentological evidence for a large continental ice-sheet for the mid-Carboniferous over central Argentina. Journal of South American Earth Sciences 106, 103066, https://doi.org/10.1016/j.jsames.2020.103066.
  • van der Vegt, P., Janszen, A. & Moscariello, A., 2012. Tunnel valleys: current knowledge and future perspectives. [In:] Huuse, M., Redfern, J., Le Heron, D.P., Dixon, R. J., Moscariello, A. & Craig, J. (Eds), Glaciogenic reservoirs and hydrocarbon systems. Geological Society, London, Special Publications 368, https://doi.org/10.1144/SP368.13.
  • Vandyk, T.M., Kettler, C., Davies, B.J., Shields, G.A., Candy, I. & Le Heron, D.P., 2021. Reassessing classic evidence for warm-based Cryogenian ice on the western Laurentian margin: The “striated pavement” of the Mineral Fork Formation, USA. Precambrian Research 363, 106345, https://doi.org/10.1016/j.precamres.2021.106345.
  • Vesely, F.F. & Assine, M.L., 2014. Ice-keel scour marks in the geological record: evidence from Carboniferous soft-sediment striated surfaces in the Paraná Basin, southern Brazil. Journal of Sedimentary Research 84, 26–39, https://doi.org/10.2110/jsr.2014.4.
  • Vesely, F.F., Rodrigues, M.C.N.L, Rosa, E.L.M., Amato, J.A., Trzaskos, B., Isbell, J.L. & Fedorchuk, N.D., 2018. Recurrent emplacement of non-glacial diamictite during the late Paleozoic ice age. Geology 46, 615–618, https://doi.org/10.1130/G45011.1.
  • Vickers, M.L., Jones, M.T., Longman, J., Evans, D., Ullmann, C.V., Wulfsberg Stokke, E., Vickers, M., Frieling, J., Harper, D.T., Clementi, V.J. & the IODP Expedition 396 Scientists, 2023. Paleocene-Eocene age glendonites from the Norwegian Margin - Indicators of cold snaps in the hothouse? Climate of the Past. https://doi.org/10.5194/egusphere-2023-1651.
  • Visser, J.N.J., 1983. The problems of recognizing ancient subaqueous debris flow deposits in glacial sequences. Transactions of the Geological Society of South Africa 86, 127–135.
  • Waters, J.M. & Craw, D., 2017. Large kelp-rafted rocks as potential dropstones in the Southern Ocean. Marine Geology 391, 13–19.
  • Westergaard, K.B., Zemp, N., Bruederle, L.P., Stenøien, H.K., Widmer, A. & Fior, S., 2019. Population genomic evidence for plant glacial survival in Scandinavia. Molecular Ecology 28, 818– 832, https://doi.org/10.1111/mec.14994.
  • Woodworth-Lynas, C.M.T., 1992. The geology of ice scour. University of Wales, Bangor.
  • Woodworth-Lynas, C.M.T. & Dowdeswell, J.A., 1994. Soft-sediment striated surfaces and massive diamicton facies produced by floating ice. [In:] Deynoux, M., Miller, J.M.G., Domack, E.W., Eyles, N., Fairchild, I.J. & Young, G.M. (Eds), Earth´s glacial record. Cambridge University Press, pp. 241–259, https://doi.org/10.1017/CBO9780511628900.019.
  • Woodworth-Lynas, C.M.T. & Guigné, J.Y., 1990. Iceberg scours in the geological record: examples from glacial Lake Agassiz. [In:] Dowdeswell, J.A. & Scource, J.D. (Eds), Glacimarine environments: Processes and sediments. Geological Society, London, Spec. Publ. 53, pp. 217–223.
  • Wright, R., Anderson, J.B. & Fisco, P.P., 1983. Distribution and association of sediment gravity flow deposits and glacial/glacial-marine sediments around the continental margin of Antarctica. [In:] Molnia, B.F. (Ed.), Glacial-marine sedimentation. Plenum Press, New York, pp. 265–300.
  • Yassin, M.A. & Abdullatif, O.M., 2017. Chemostratigraphic and sedimentologic evolution of Wajid Group (Wajid Sandstone): An outcrop analog study from the Cambrian to Permian, SW Saudi Arabia. Journal of African Earth Sciences 126, 159–175.
  • Yawar, Z. & Schieber, J., 2017. On the origin of silt laminae in laminated shales. Sedimentary Geology 360, 22–34.
  • Zaki, A.S., Giegengack, R. & Castelltort, S., 2020. Inverted channels in the Eastern Sahara – distribution, formation, and interpretation to enable reconstruction of paleodrainage networks. [In:] Herget, J. & Fontana, A. (Eds), Palaeohydrology, geography of the physical environment. Springer, pp. 117–134, https://doi.org/10.1007/978-3-030-23315-0_6.
  • Zaki, A.S., Pain, C.F., Edgett, K.E. & Castelltort, S., 2021. Global inventories of inverted stream channels on Earth and Mars. Earth-Science Reviews 216, 103561, https://doi.org/10.1016/j.earscirev.2021.103561.
  • Zaki, A.S., Pain, C.F., Edgett, K.E. & Giegengack, R., 2018. Inverted stream channels in the Western Desert of Egypt: Synergistic remote, field observations and laboratory analysis on Earth with applications to Mars. Icarus 309, 105–124, https://doi.org/10.1016/j.icarus.2018.03.001.
  • Zavala, C., 2019. The new knowledge is written on sedimentary rocks – a comment on Shanmugam´s paper ´The hyperpycnite problem´. Journal of Palaeogeography 8, 23, https://doi.org/10.1186/s42501-019-0037-3.
  • Zavala, C., 2020. Hyperpycnal (over density) flows and deposits. Journal of Palaeogeography 9, 17, https://doi.org/10.1186/s42501-020-00065-x.
  • Zavala, C. & Arcuri, M., 2016. Intrabasinal and extrabasinal turbidites: origin and distinctive characteristics. Sedimentary Geology 337, 36–54, https://doi.org/10.1016/j.sedgeo.2016.03.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-365eaf67-1ead-490b-a8a5-483409876a29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.