PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Comparison of sorption capacity of biochar-based sorbents for capturing heavy-metallic ions from water media

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To develop the sorption efficiency of heavy metals: Cd(II), Co(II), Zn(II) and Pb(II) ions the biochar was modified by chitosan, FeSO4 and NaBH4. The morphology, physical structure and chemical composition of the biochar based sorbents were characterized by the scanning electron miscroscopy method, N2 adsorption and desorption isotherms, X-ray diffractometry as well as the Fourier transform infrared spectroscopywith the attenuated total reflectance analyses. The research of M(II) ions sorption was carried out as a function of pH (2-6), interaction time (0-360 minutes) and temperature (293, 313, 333 K). The maximum sorption was obtained by the ChBC for Zn(II) ions - 19.23 mg/g and for MBC-Pb(II) - 19.11 mg/g. Different kinetic models as well as both isotherm and thermodynamic equations were used the sorption data modelling. For Cd(II), Co(II) and Zn(II) ions the nonlinear regression of the Elovich equation gave the best fit for the experimental data. On the other hand, for Pb(II) ions, the nonlinear forms of pseudo first order and pseudo second order show a better match. The value of the correlation coefficient >0.960 determined from the Freundlich isotherm model is the highest suggesting a good fit to the experimental data. The thermodynamic parameters: ΔG°, ΔH° and ΔS° were listed and indicated that the process is spontaneous and endothermic in nature. The desorption efficiency was determined with the use of nitric, hydrochloric and sulfuric acids and the largest desorption yield for Pb(II)-ChBC equal 99.5 % was gained applying HNO3.
Rocznik
Strony
art. no. 150265
Opis fizyczny
Bibliogr. 51 poz., rys., wykr.
Twórcy
autor
  • Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
Bibliografia
  • AICHOUR, A., ZAGHOUANE-BOUDIAF, H., DJAFER KHODJA, H., 2022. Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arab. J. Chem. 15(1), 103542.
  • AKSU, Z., ISOGLU, I. A. 2005. Removal of copper(II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochem. 40, 3031–3044.
  • ALAEI, R., JAVANSHIR, S., BEHNAMFARD, A., 2020. Treatment of gold ore cyanidation wastewater by adsorption onto a Hydrotalcite-type anionic clay as a novel adsorbent. J. Environ. Health Sci. Eng. 18(2), 779–791.
  • AMALINA, F., RAZAK, A. S. A., KRISHNAN, S., ZULARISAM, A. W., NASRULLAH, M., 2022. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Mater. 3, 100045.
  • BAI, S., WANG, L., MA, F., ZHU, S., XIAO, T., YU, T., WANG, Y., 2020. Self-assembly biochar colloids mycelial pellet for heavy metal removal from aqueous solution. Chemosphere. 242, 125182.
  • BASSAM, R., EL ALOUANI, M., MAISSARA, J., JARMOUNI, N., BELHABRA, M., EL MAHI CHBIHI, M., BELAAOUAD, S., 2022. Investigation of competitive adsorption and desorption of heavy metals from aqueous solution using raw rock: Characterization kinetic, isotherm, and thermodynamic. Mater. Today: Proc. 52, 158–165.
  • BAZAN-WOZNIAK, A., PIETRZAK, R., 2019. Activated bio-carbons prepared by physical activation of residues after supercritical extraction of raw plants. Physicochem. Probl. Miner. Process. 55(6), 1357–1365.
  • BOZECKA, A., BOZECKI, P., SANAK-RYDLEWSKA, S., 2016. Removal of Pb(II) and Cd(II) ions from aqueous. Physicochem. Probl. Miner. Process. 52(1), 380–396.
  • CUI, X., DAI, X., KHAN, K. Y., LI, T., YANG, X., HE, Z., 2016. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresour. Technol. 218, 1123–1132.
  • DAI, W., XU, M., ZHAO, Z., ZHENG, J., HUANG, F., WANG, H., LIU, C., XIAO, R., 2021. Characteristics and quantification of mechanisms of Cd2+ adsorption by biochars derived from three different plant-based biomass. Arab. J. Chem. 14(5), 103119.
  • DEMEY, H., VINCENT, T., RUIZ, M., SASTRE, A. M., GUIBAL, E., 2014. Development of a new chitosan/Ni(OH)2 -based sorbent for boron removal. Chem. Eng J. 244, 576–586.
  • DENG, X., CHI, R., XIAO, C., ZHANG, Z., LIU, X., HU, J., 2021. The intensified effect of nitrogen removal properties using Pseudomonas fulva K3 and MgBC for the weathered crust rare earth wastewater treatment. Physicochem. Probl. Miner. Process. 57(3), 69–84.
  • DUDEK, S., KOŁODYŃSKA, D., 2022. Arsenate removal on the ion exchanger modified with cerium(III) ions. Physicochem. Probl. Miner. Process. 58(2).
  • ELTAWEIL, A. S., OMER, A. M., EL-AQAPA, H. G., GABER, N. M., ATTIA, N. F., EL-SUBRUITI, G. M., MOHY-ELDIN, M. S., ABD EL-MONAEM, E. M., 2021. Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydr. Polym. 274, 118671.
  • FARHANGI-ABRIZ, S., GHASSEMI-GOLEZANI, K., 2021. Changes in soil properties and salt tolerance of safflower in response to biochar-based metal oxide nanocomposites of magnesium and manganese. Ecotoxicol. Environ. Saf. 211, 111904.
  • GONG, H., CHI, J., DING, Z., ZHANG, F., HUANG, J., 2020. Removal of lead from two polluted soils by magnetic wheat straw biochars. Ecotoxicol. Environ. Saf. 205, 111132.
  • HAN, Z., SANI, B., MROZIK, W., OBST, M., BECKINGHAM, B., KARAPANAGIOTI, H. K., WERNER, D., 2015. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars. Water Res. 70, 394–403.
  • HU, Q., XU, Z., QIAO, S., HAGHSERESHT, F., WILSON, M., LU, G. Q., 2007. A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. J. Colloid Interface Sci. 308(1), 191–199.
  • HUANG, J., YUAN, F., ZENG, G., LI, X., GU, Y., SHI, L., LIU, W., SHI, Y., 2017. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere. 173, 199–206.
  • IGBERASE, E., OFOMAJA, A., OSIFO, P. O., 2019. Enhanced heavy metal ions adsorption by 4‑aminobenzoic acid grafted on chitosan/epichlorohydrin composite: Kinetics, isotherms, thermodynamics and desorption studies. Int. J. Biol. Macromol. 123, 664–676.
  • JANU, R., MRLIK, V., RIBITSCH, D., HOFMAN, J., SEDLÁČEK, P., BIELSKÁ, L., SOJA, G., 2021. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 4, 36–46.
  • JELLALI, S., DIAMANTOPOULOS, E., HADDAD, K., ANANE, M., DURNER, W., MLAYAH, A., 2016. Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar: Experimental investigations and numerical modelling. J. Environ. Manage. 180, 439–449.
  • KOŁODYŃSKA, D., BĄK, J., KOZIOŁ, M., PYLYPCHUK, L. V., 2017. Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar. Nanoscale Res. Lett. 12.
  • KOŁODYŃSKA, D., KRUKOWSKA, J., THOMAS, P., 2017. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 307, 353–363.
  • KOŁODYŃSKA, DOROTA, BĄK, J., MAJDAŃSKA, M., FILA, D., 2018. Sorption of lanthanide ions on biochar composites. J. Rare Earths. 36(11), 1212–1220.
  • KONICKI, W., ALEKSANDRZAK, M., MIJOWSKA, E., 2017. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem. Eng. Res. Des. 123, 35–49.
  • LEE, H. S., SHIN, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. J. Environ. Manage.299, 113651.
  • LI, B., JING, F., HU, Z., LIU, Y., XIAO, B., GUO, D., 2021. Simultaneous recovery of nitrogen and phosphorus from biogas slurry by Fe-modified biochar. J. Saudi Chem. Soc. 25(4), 101213.
  • NAIMA, A., AMMAR, F., ABDELKADER, O., RACHID, C., LYNDA, H., SYAFIUDDIN, A., BOOPATHY, R., 2022. Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. Bioresour. Technol. 347, 126685.
  • NANTA, P., KASEMWONG, K., SKOLPAP, W., 2018. Isotherm and kinetic modeling on superparamagnetic nanoparticles adsorption of polysaccharide. J. Environ.Chem.Eng. 6(1), 794–802.
  • OTREMBSKA, P., GEGA, J., 2013. Kinetic studies on Sorption of Ni(II) and Cd(II) from chloride solutions using selected acidic cation exchangers. Physicochem. Probl. Miner. Process. 49(1), 301–312.
  • QAMBRANI, N. A., RAHMAN, M. M., WON, S., SHIM, S., RA, C., 2017. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment : A review. Renew. Sust. Energ. Rev. 79, 255–273.
  • QU, J., DONG, M., WEI, S., MENG, Q., HU, L., HU, Q., WANG, L., HAN, W., ZHANG, Y., 2020. Microwave-assisted one pot synthesis of β-cyclodextrin modified biochar for concurrent removal of Pb(II) and bisphenol a in water. Carbohydr. Polym. 250.
  • RAJAPAKSHA, A. U., CHEN, S. S., TSANG, D. C. W., ZHANG, M., VITHANAGE, M., MANDAL, S., GAO, B., BOLAN, N. S., OK, Y. S., 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere. 148, 276–291.
  • RAMA CHANDRAIAH, M., 2016. Facile synthesis of zero valent iron magnetic biochar composites for Pb(II) removal from the aqueous medium. Alex. Eng. J. 55(1), 619–625.
  • RANGABHASHIYAM, S., LINS, P. V. DO. S., OLIVEIRA, L. M. T. D. M., SEPULVEDA, P., IGHALO, J. O., RAJAPAKSHA, A. U., MEILI, L., 2022. Sewage sludge-derived biochar for the adsorptive removal of wastewater pollutants: A critical review. Environ. Pollut. 293(November 2021).
  • SBIZZARO, M., CÉSAR SAMPAIO, S., RINALDO DOS REIS, R., DE ASSIS BERALDI, F., MEDINA ROSA, D., MARIA BRANCO DE FREITAS MAIA, C., SARAMAGO DE CARVALHO MARQUES DOS SANTOS CORDOVIL, C., TILLVITZ DO NASCIMENTO, C., ANTONIO DA SILVA, E., EDUARDO BORBA, C., 2021. Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems. J. Mol. Liq. 343, 117667.
  • SHARAF EL-DEEN, S. E. A., MOUSSA, S. I., MEKAWY, Z. A., SHEHATA, M. K. K., SADEEK, S. A., SOMEDA, H. H., 2017. Evaluation of CNTs/MnO2 composite for adsorption of 60Co(II), 65Zn(II) and Cd(II) ions from aqueous solutions. Radiochim. Acta. 105(1), 43–55.
  • SOČO, E., KALEMBKIEWICZ, J., 2015. Removal of copper(II) and zinc(II) ions from aqueous solution by chemical treatment of coal fly ash. Croat. Chem. Acta. 88(3), 267–279.
  • TAN, Y., WAN, X., NI, X., WANG, L., ZHOU, T., SUN, H., WANG, N., YIN, X., 2022. Efficient removal of Cd(II) from aqueous solution by chitosan modified kiwi branch biochar. Chemosphere. 289(Ii).
  • TAN, Z., LIN, C. S. K., JI, X., RAINEY, T. J., 2017. Returning biochar to fields: A review. Appl. Soil Ecol. 116, 1–11.
  • TRAKAL, L., VESELSKÁ, V., ŠAFARIK, I., VÍTKOVÁ, M., CˇÍHALOVÁ, S., KOMÁREK, M., 2016. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 203, 318–324.
  • WANG, C., WANG, H., 2018. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere. 192, 1–4.
  • WANG, F., JIN, L., GUO, C., MIN, L., ZHANG, P., SUN, H., ZHU, H., ZHANG, C., 2021. Enhanced heavy metals sorption by modified biochars derived from pig manure. Sci. Total Environ. 786, 147595.
  • WANG, Y., LIU, Y., LU, H., YANG, R., YANG, S., 2018. Competitive adsorption of Pb(II), Cu(II) and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 261, 53–61.
  • WEKOYE, J. N., WANYONYI, W. C., WANGILA, P. T., TONUI, M. K., 2020. Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environ. Chem. Ecotoxicol. 2, 24–31.
  • XIAO, J., HU, R., GUANGCAI, C., XING, B., 2020. Facile synthesis of multifunctional bone biochar composites decorated with Fe/Mn oxide micro-nanoparticles: Physicochemical properties, heavy metals sorption behavior and mechanism. J. Hazard. Mater. 399, 123067.
  • XIE, J., LIN, R., LIANG, Z., ZHAO, Z., YANG, C., CUI, F., 2021. Effect of cations on the enhanced adsorption of cationic dye in Fe3O4-loaded biochar and mechanism. J. Environ. Chem. Eng. 9(4), 105744.
  • ZHANG, L., TANG, S., HE, F., LIU, Y., MAO, W., GUAN, Y., 2019. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment. Chem. Eng. J. 378, 122215.
  • ZHANG, W., TAN, X., GU, Y., LIU, S., LIU, Y., HU, X., LI, J., ZHOU, Y., LIU, S., HE, Y., 2020. Rice waste biochars produced at different pyrolysis temperatures for arsenic and cadmium abatement and detoxification in sediment. Chemosphere. 250, 126268.
  • ZHOU, Y., BIN GAO, A. R. Z., FANG, J., YINING SUN, CAO, X., 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J. 231, 512–518.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3658f9e0-2805-48e6-841f-1135c44ff568
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.