PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the obstacle vector field method for trajectory planning of a planar manipulator in simulated microgravity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Capture and removal of large space debris is needed to prevent the growth of the debris population in low Earth orbit. Capture of a non-cooperative object by a manipulator mounted on a chaser satellite requires collision-free trajectory of the manipulator. The obstacle vector field (OVF) method allows to solve the trajectory planning problem in difficult scenarios. The OVF method is based on a vector field that surrounds the obstacles and generates virtual forces that drive the manipulator around the obstacles. The original formulation of the OVF method allows to obtain the desired position of the gripper, but not the desired orientation. To perform the grasping manoeuvre, the gripper has to be positioned in a specific point and aligned with the grasping interface. In this paper, we propose a modification to the OVF method that allows to obtain the desired position and orientation of the gripper. Moreover, we investigate the practical applicability of the OVF method. The OVF method is demonstrated in experiments performed on a planar air-bearing microgravity simulator. The presented results prove that the OVF method can be applied for a real system operating in simulated microgravity conditions.
Rocznik
Strony
171--187
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
autor
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
Bibliografia
  • Basmadji F.L., Chmaj G., Rybus T., Seweryn K. (2019) Microgravity testbed for the development of space robot control systems and the demonstration of orbital maneuvers, Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 111763V, Wilga, Poland.
  • Benevides J.R., Grassi V. (2015) Autonomous path planning of free-floating manipulators using RRT-based algorithms, Proc. 12th Latin American Robotics Symposium and 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Minas Gerais, Brazil, 139-144.
  • Biesbroek R., Innocenti L., Wolahan A., Serrano S.M. (2017) e. Deorbit – ESA’s active debris removal mission, Proc. 7th European Conference on Space Debris, Darmstadt, Germany.
  • Biesbroek R., Aziz S., Wolahan A., Cipolla S., Richard-Noca M., Piguet L. (2021) The Clearspace-1 mission: ESA and Clearspace team up to remove debris, Proc. 8th European Conference on Space Debris, Darmstadt, Germany.
  • Bonnal C., Ruault J.M., Desjean M.C. (2013) Active debris removal: Recent progress and current trends, Acta Astronautica, Vol. 85, 51-60.
  • Dubowsky S., Papadopoulos E. (1993) The kinematics, dynamics, and control of free-flying and free-floating space robotic systems, IEEE Transactions on Robotics and Automation, Vol. 9, No. 5, 531-543.
  • Elahres M., Fonte A., Poisson G. (2021) Evaluation of an artificial potential field method in collision-free path planning for a robot manipulator, Proc. 2nd International Conference on Robotics, Computer Vision and Intelligent Systems, Valletta, Malta, 92-102.
  • Estable S., Pruvost C., Ferreira E., Telaar J., Fruhnert M., et al. (2020) Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation Phase study, Journal of Space Safety Engineering, Vol. 7, No. 1, 52-66.
  • Flores-Abad A., Ma O., Pham K., Ulrich S. (2014) A review of space robotics technologies for on-orbit servicing, Progress in Aerospace Sciences, Vol. 68, 1-26.
  • Gao X., Jia Q., Sun H., Chen G. (2011) Research on path planning for 7-DOF space manipulator to avoid obstacle based on A* algorithm, Sensor Letters, Vol. 9, No. 4, 1515-1519.
  • Junkins J.L., Schaub H. (1997) An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics, The Journal of the Astronautical Sciences, Vol. 45, No. 3, 279-295.
  • Khatib O. (1986) The potential field approach and operational space formulation in robot control, In: Narendra K.S. (ed.), Adaptive and Learning Systems, Springer, Boston, 367-377.
  • Kindracki J., Tur K., Paszkiewicz P., Mężyk Ł., Boruc Ł., Wolański P. (2017) Experimental research on low-cost cold gas propulsion for a space robot platform, Aerospace Science and Technology, Vol. 62, 148-157.
  • Kowalczyk W., Michałek M., Kozłowski K. (2012) Trajectory tracking control with obstacle avoidance capability for unicycle-like mobile robot, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 60, No. 3, 537-546.
  • Lin C.C., Chuang J.H. (2003) Potential-based path planning for robot manipulators in 3-D workspace, Proc. IEEE International Conference on Robotics and Automation (ICRA'2003), Taipei, Taiwan, vol. 3, 3353-3358.
  • Liou J.C., Johnson N.L., Hill N.M. (2010) Controlling the growth of future LEO debris populations with active debris removal, Acta Astronautica, Vol. 66, No. 5-6, 648-653.
  • Masoud A.A., Al-Shaikhi A. (2015) Time-sensitive, sensor-based, joint planning and control of mobile robots in cluttered spaces: A harmonic potential approach, Proc. 54th IEEE Conference on Decision and Control (CDC'2015), Osaka, Japan, 2761-2766.
  • Masoud A.A., Bayoumi M.M. (1993) Robot navigation using the vector potential approach, Proc. IEEE International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, USA, vol. 1, 805-811.
  • Misra G., Bai X. (2017) Optimal path planning for free-flying space manipulators via sequential convex programming, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 11, 3019-3026.
  • Mukherjee R., Nakamura Y. (1991) Nonholonomic redundancy of space robots and its utilization via hierarchical liapunov functions, Proc. American Control Conference (ACC'1991), Boston, USA, 1491-1496.
  • Murtaza A., Pirzada S.J.H., Xu T., Jianwei L. (2020) Orbital debris threat for space sustainability and way forward, IEEE Access, Vol. 8, 61000-61019.
  • Pamosoaji A.K., Hong K.S. (2013) A path-planning algorithm using vector potential functions in triangular regions, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol. 43, No. 4, 832-842.
  • Park M.G., Lee M.C. (2003) A new technique to escape local minimum in artificial potential field based path planning, KSME International Journal, Vol. 17, 1876-1885.
  • Ratajczak J., Tchoń K. (2020) Normal forms and singularities of non-holonomic robotic systems: A study of free-floating space robots, Systems and Control Letters, Vol. 138, 104661.
  • Rybus T. (2018) Obstacle avoidance in space robotics: Review of major challenges and proposed solutions, Progress in Aerospace Sciences, Vol. 101, 31-48.
  • Rybus T. (2020) Point-to-point motion planning of a free-floating space manipulator using the Rapidly-exploring Random Trees (RRT) method, Robotica, Vol. 38, No. 6, 957-982.
  • Rybus T. (2022) The Obstacle Vector Field (OVF) method for collision-free trajectory planning of free-floating space manipulator, Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 70, No. 2, e140691.
  • Rybus T., Seweryn K. (2016) Planar air-bearing microgravity simulators: review of applications, existing solutions and design parameters, Acta Astronautica, Vol. 120, 239-259.
  • Rybus T., Seweryn K. (2018) Zastosowanie metody sztucznych pól potencjału do planowania trajektorii manipulatora satelitarnego [in polish: Application of the artificial potential field method for trajectory planning of space manipulator], In: Tchoń K., Zieliński C. (eds.), Prace Naukowe Politechniki Warszawskiej: Elektronika, Vol. 196, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 61-74.
  • Rybus T., Wojtunik M., Basmadji F.L. (2022) Optimal collision-free path planning of a freefloating space robot using spline-based trajectories, Acta Astronautica, Vol. 190, 395-408.
  • Rybus T., Seweryn K., Oleś J., Basmadji F.L., Tarenko K., Moczydłowski R., Barciński T., Kindracki J., Mężyk Ł., Paszkiewicz P., Wolański P. (2019) Application of a planar airbearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator, Acta Astronautica, Vol. 155, 211-229.
  • Seweryn K., Banaszkiewicz M. (2008) Optimization of the trajectory of a general free-flying manipulator during the rendezvous maneuver, Proc. AIAA Guidance, Navigation, and Control Conference and Exhibit (AIAA-GNC’2008), Honolulu, HI, USA.
  • Shan M., Guo J., Gill E. (2016) Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, Vol. 80, 18-32.
  • Umetani Y., Yoshida K. (1989) Resolved motion rate control of space manipulators with generalized Jacobian matrix, IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 303-314.
  • Volpe R., Khosla P. (1987) Artificial potentials with elliptical isopotential contours for obstacle avoidance, Proc. 26th IEEE Conference on Decision and Control (CDC'1987), Los Angeles, CA, USA, 180-185.
  • Wang M., Luo J., Fang J., Yuan J. (2018) Optimal trajectory planning of free-floating space manipulator using differential evolution algorithm, Advances in Space Research, Vol. 61, No. 6, 1525-1536.
  • Xu Y. (1993) The measure of dynamic coupling of space robot systems, Proc. IEEE International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, USA, vol. 3, 615-620.
  • Yanoshita Y., Tsuda S. (2009) Space Robot Path Planning for Collision Avoidance, Proc. International MultiConference of Engineers and Computer Scientists (IMECS'2009), Hong Kong.
  • Yoshida K. (1994) Space robotics research activity with Experimental Free-Floating Robot Satellite (EFFORTS) simulators, In: Yoshikawa, T. and Miyazaki, F. (eds.), Experimental Robotics III. Lecture Notes in Control and Information Sciences, Vol. 200. Springer, Berlin, Heidelberg, 561-578.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36544e25-07e2-4b3c-a6fa-157b654c0eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.