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ABSTRACT. Capture and removal of large space debris is needed to prevent the growth of 
the debris population in low Earth orbit. Capture of a non-cooperative object by a manipulator 
mounted on a chaser satellite requires collision-free trajectory of the manipulator. The 
obstacle vector field (OVF) method allows to solve the trajectory planning problem in 
difficult scenarios. The OVF method is based on a vector field that surrounds the obstacles 
and generates virtual forces that drive the manipulator around the obstacles. The original 
formulation of the OVF method allows to obtain the desired position of the gripper, but not 
the desired orientation. To perform the grasping manoeuvre, the gripper has to be positioned 
in a specific point and aligned with the grasping interface. In this paper, we propose a 
modification to the OVF method that allows to obtain the desired position and orientation of 
the gripper. Moreover, we investigate the practical applicability of the OVF method. The 
OVF method is demonstrated in experiments performed on a planar air-bearing microgravity 
simulator. The presented results prove that the OVF method can be applied for a real system 
operating in simulated microgravity conditions. 
Keywords: collision-free trajectory planning, obstacle vector field (OVF) method, active 
debris removal (ADR), free-floating manipulator, planar air-bearing microgravity simulator 

1. INTRODUCTION 
Large population of defunct artificial objects in low Earth orbit, known as space debris, poses 
a serious threat to operational satellites (Murtaza et al., 2020). Removal of existing objects 
from orbit is needed to prevent the growth of the space debris population (Liou et al., 2010). 
Thus, the active debris removal (ADR) missions are proposed to capture and remove large 
space debris from orbit (Bonnal et al., 2013). The European Space Agency (ESA) was 
working on the e.Deorbit mission to demonstrate the ADR capabilities (Biesbroek et al., 
2017). The Clearspace-1 mission is currently under development to capture and remove a 
selected object from orbit (Biesbroek et al., 2021). Grasping of a target object in-orbit will be 
the most challenging part of the proposed missions. Various techniques can be used to 
perform the capture operation (Shan et al., 2016). The most mature approach is based on the 
use of a gripper attached to a manipulator mounted on a chaser satellite. Such an approach 
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was proposed for the e.Deorbit mission (Estable et al., 2020). Advanced trajectory planning 
and control algorithms are required to perform the capture operation (Flores-Abad et al., 
2014). The control system must take into account the influence of the manipulator motion on 
the state of the chaser satellite (Dubowsky and Papadopoulos, 1993). Moreover, the 
manipulator has to avoid collisions with the elements of the target object. Satellites are 
equipped with appendages (e.g. solar panels), which make the trajectory planning task 
difficult. 
In this paper, we focus on the problem of collision-free trajectory planning of a manipulator 
mounted on a free-floating chaser satellite. A review of trajectory planning methods 
applicable for the considered in-orbit capture operation was presented by Rybus (2018). The 
planning is performed in a high-dimensional configuration space, as the configuration of the 
satellite-manipulator system is described not only by the angular positions of manipulator 
joints, but also by the position and orientation of the chaser. The proposed methods include 
variants of the Rapidly exploring Random Tree (RRT) algorithm (Benevides and Grassi, 
2015; Rybus, 2020), the A* algorithm (Gao et al. 2011), and various optimisation techniques 
(Misra and Bai, 2017; Wang et al., 2018; Rybus et al., 2022). However, these approaches 
have a high computational cost, which can be a problem due to limited resources of the chaser 
satellite on-board computer and the short time available for the capture operation. Moreover, 
the RRT algorithm is based on the random search of the configuration space and it is not 
deterministic, that is, a different solution is generated in each run. Due to these facts, the 
possibility of practical application of the aforementioned methods in the ADR missions is 
limited. Thus, other methods for trajectory planning are being sought. 
One of the considered approaches is based on the artificial potential field (APF) method. In 
the APF method, the manipulator is considered as a particle that is moving in an artificial 
force field (Khatib, 1986). This force field is composed of the attracting potential of the 
desired final position of the gripper and the repulsive potential of the obstacles. The APF 
method is widely used for fixed-base manipulators working on Earth (Lin and Chuang, 2003) 
and for mobile robots (Kowalczyk et al., 2012). Application of the APF method for a 
manipulator mounted on a chaser satellite was proposed by Mukherjee and Nakamura (1991). 
The existence of local minima of the potential field is the main disadvantage of the APF 
method (Park and Lee, 2003). The trajectory planning fails when the manipulator encounters a 
local minimum of the field. Yanoshita and Tsuda (2009) considered the trajectory planning 
problem for a satellite-manipulator system and proposed the potential field based on the 
Laplace function that allows to partially overcome the problem of local minima. Rybus and 
Seweryn (2018) modified the classical APF method by introducing a new approach for 
selection of the direction in which the repulsive force is acting. The modified APF method is 
more efficient than the classical APF method, that is, it allows to solve the trajectory planning 
problem in some of the cases, in which the classical APF method is unsuccessful.  
Recently, Rybus (2022) proposed the obstacle vector field (OVF) method. In the classical 
APF method, a scalar potential field is used, while in the OVF method, a vector field is 
constructed. This vector field surrounds the obstacles and determines the direction in which 
the link of the manipulator should move to avoid collision with obstacles. The OVF method 
takes into account the fact that the motion of the manipulator influences the state of the chaser 
satellite. The OVF method is less efficient than the RRT algorithm, but it is more efficient 
than the modified APF method. Moreover, it is fully deterministic and it requires significantly 
less computational time than the RRT algorithm. The OVF method is, to some extent, similar 
to several concepts known from the literature. Masoud and Al-Shaikhi (2015) proposed an 
approach in which a vector field guides a mobile robot to the desired position. This field is 
produced from the harmonic potential and is perturbed by obstacles. The desired trajectory is 
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obtained by solving a gradient dynamical system. Such an approach is more complicated than 
the OVF method because the algorithm is based on partial differential equations. A trajectory 
planning algorithm based on parametrised vector potential functions was proposed by 
Pamosoaji and Hong (2013) for a unicycle vehicle. In this approach, the workspace is split 
into predefined triangular regions and the vector potential functions are calculated using 
information on regions’ vertices, the obstacles, and the desired position of the vehicle. 
Masoud and Bayoumi (1993) used vector potential field for planning a trajectory of a fixed-
base manipulator. The guiding vector field is generated by solving a scalar boundary value 
problem and it has two components: one responsible for driving the gripper toward the 
desired position and the other one responsible for guiding the gripper around obstacles. A 
detailed discussion of similarities and differences between these methods and the OVF 
method was presented by Rybus (2022). 
The OVF method was validated in numerical simulations performed for a planar 2 Degrees of 
Freedom (DoF) manipulator mounted on a free-floating chaser satellite (Rybus, 2022). This 
method allows to obtain the desired position of the gripper, but it does not allow to obtain the 
desired orientation of the gripper. This is a major disadvantage as it is necessary to rotate the 
gripper to a specific orientation to perform the grasping manoeuvre (the gripper has to be fully 
aligned with a grasping interface on the non-cooperative target satellite).  
In this paper, we introduce a modification to the OVF method that allows to obtain not only 
the desired position of the gripper, but also its desired orientation. We also investigate the 
possibility of application of the OVF method for a real system operating in microgravity 
conditions. As a case study, we consider a mock-up of a satellite-manipulator system operated 
on a planar air-bearing microgravity simulator. Such simulators are widely used for validation 
of trajectory planning and control algorithms in the field of space robotics (Rybus and 
Seweryn, 2016). Demonstration of the practical application of the OVF method for a system 
operating in simulated microgravity is the main contribution of this paper.  
The paper is organised as follows. The dynamic equations of a satellite-manipulator system 
are presented in Section 2. The modified OVF method is described in Section 3. The obtained 
results are presented in Section 4 and discussed in Section 5. The conclusions are given in 
Section 6. 

2. DYNAMICS OF THE FREE-FLOATING SATELLITE-MANIPULATOR SYSTEM 
To describe the dynamics of a chaser satellite equipped with a manipulator, we follow the 
approach based on the Generalised Jacobian Matrix (Umetani and Yoshida, 1989). General 
equations that describe the dynamics of a satellite-manipulator system were presented by 
Seweryn and Banaszkiewicz (2008) and by Rybus et al. (2022). In this paper, we present 
application of these equations to a specific case: mock-up of a satellite-manipulator system 
operated on the planar air-bearing microgravity simulator at the Space Research Centre of the 
Polish Academy of Sciences (Basmadji et al., 2019). The mock-up of the chaser satellite is 
equipped with a 3 DoF manipulator. This system is shown in Figure 1. All joints of the 
manipulator are rotational. 
We use the following vector of generalised coordinates (Junkins and Schaub, 1997):  

 𝐪𝐪𝑝𝑝 = [𝐫𝐫𝑐𝑐ℎ𝑇𝑇 𝜓𝜓𝑐𝑐ℎ 𝛉𝛉𝑇𝑇]𝑇𝑇, (1) 

where 𝐫𝐫𝑐𝑐ℎ = [𝑟𝑟𝑥𝑥𝑐𝑐ℎ 𝑟𝑟𝑦𝑦𝑐𝑐ℎ]𝑇𝑇, 𝑟𝑟𝑥𝑥𝑐𝑐ℎ and 𝑟𝑟𝑦𝑦𝑐𝑐ℎ are the X and Y components of the chaser satellite 
centre of mass (CoM) position in the inertial frame of reference (Π𝑖𝑖𝑖𝑖𝑖𝑖), respectively, 𝜓𝜓𝑐𝑐ℎ is 
the orientation of the chaser satellite, 𝛉𝛉 = [𝜃𝜃1 𝜃𝜃2 𝜃𝜃3]𝑇𝑇, while 𝜃𝜃𝑖𝑖 is the angular position of 
the i-th joint. The vector of generalised velocities is given by  
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 𝐪𝐪𝑣𝑣 = [𝐯𝐯𝑐𝑐ℎ𝑇𝑇 𝜔𝜔𝑐𝑐ℎ 𝛉̇𝛉𝑇𝑇]𝑇𝑇, (2) 

where 𝐯𝐯𝑐𝑐ℎ = [𝑣𝑣𝑥𝑥𝑐𝑐ℎ 𝑣𝑣𝑦𝑦𝑐𝑐ℎ]𝑇𝑇, 𝑣𝑣𝑥𝑥𝑐𝑐ℎ and 𝑣𝑣𝑦𝑦𝑐𝑐ℎ are the X and Y components of the chaser satellite 
CoM velocity, respectively, 𝜔𝜔𝑠𝑠 is the angular velocity of the satellite, while 𝛉̇𝛉 denotes the 
vector of angular velocities of manipulator joints.  

 
Figure 1. Schematic view of the free-floating satellite-manipulator system  

and the general idea of the OVF method 

The state of the chaser satellite equipped with a manipulator is described by the following 
vector: 

 𝐱𝐱 = �𝐪𝐪𝑣𝑣𝑇𝑇 𝐪𝐪𝑝𝑝𝑇𝑇�
𝑇𝑇
. (3) 

The dynamic equations of motion have the following form: 

 𝐱̇𝐱 = �𝐌𝐌
−1(𝐐𝐐− 𝐂𝐂𝐪𝐪𝑣𝑣)

𝐪𝐪𝑣𝑣
�, (4) 

where 𝐌𝐌 is the generalised inertia matrix and 𝐂𝐂 is the Coriolis matrix, while 𝐐𝐐 denotes the 
vector of generalised forces: 

 𝐐𝐐 = [𝐅𝐅𝑐𝑐ℎ𝑇𝑇 𝜏𝜏𝑐𝑐ℎ 𝛕𝛕𝑚𝑚𝑇𝑇 ]𝑇𝑇, (5) 

where 𝐅𝐅𝑐𝑐ℎ = [𝐹𝐹𝑥𝑥𝑐𝑐ℎ 𝐹𝐹𝑦𝑦𝑐𝑐ℎ]𝑇𝑇, 𝐹𝐹𝑥𝑥𝑐𝑐ℎ and 𝐹𝐹𝑦𝑦𝑐𝑐ℎ  are the X and Y components of external force acting 
on the chaser CoM, respectively, 𝜏𝜏𝑐𝑐ℎ is the external torque acting on the satellite, 𝛕𝛕𝑚𝑚 =
[𝜏𝜏1 𝜏𝜏2 𝜏𝜏3]𝑇𝑇, while 𝜏𝜏𝑖𝑖 denotes the control torque applied at the i-th joint. Matrices 𝐌𝐌 and 𝐂𝐂 
in (4) can be presented as  

 𝐌𝐌 = �
𝐌𝐌𝑐𝑐ℎ 𝐌𝐌𝑐𝑐ℎ/𝑚𝑚

𝐌𝐌𝑐𝑐ℎ/𝑚𝑚
𝑇𝑇 𝐌𝐌𝑚𝑚

�,               𝐂𝐂 = �𝐂𝐂𝑐𝑐ℎ𝐂𝐂𝑚𝑚
�,  (6) 

 

where 𝐌𝐌𝑐𝑐ℎ is the inertia matrix of the chaser satellite, 𝐌𝐌𝑚𝑚 is the inertia matrix of the 
manipulator, 𝐌𝐌𝑐𝑐ℎ/𝑚𝑚 is the inertia matrix that couples the chaser satellite with the manipulator, 
𝐂𝐂𝑐𝑐ℎ is the Coriolis matrix of the chaser satellite, while 𝐂𝐂𝑚𝑚 is the Coriolis matrix of the 
manipulator. Definitions of 𝐌𝐌𝑐𝑐ℎ, 𝐌𝐌𝑚𝑚, 𝐌𝐌𝑐𝑐ℎ/𝑚𝑚, 𝐂𝐂𝑐𝑐ℎ and 𝐂𝐂𝑚𝑚 matrices were presented by Rybus 
et al. (2022). In the considered case, the inertia matrix 𝐌𝐌 is non-singular and invertible. 
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Equation (4) describes the dynamic coupling between the manipulator and the chaser satellite 
(Xu, 1993).   
The planar air-bearing microgravity simulator is used to emulate microgravity conditions. It 
provides frictionless motion of the system, hence the influence of external forces can be 
neglected (Rybus et al., 2019). No gravity acceleration is acting on the system in its plane of 
motion. The cold gas thrusters are mounted on the chaser satellite (Kindracki et al., 2017), but 
in the considered scenario, they are not used during the motion of the manipulator. Thus, we 
assume that 𝐹𝐹𝑥𝑥𝑐𝑐ℎ = 𝐹𝐹𝑦𝑦𝑐𝑐ℎ = 𝜏𝜏𝑐𝑐ℎ = 0. In such a case, the momentum and the angular momentum 
of the system are conserved and equal to zero. The system is in a free-floating state, and 
changes in the position and orientation of the chaser satellite are caused by the manipulator 
motion (Dubowsky and Papadopoulos, 1993). The position of the CoM of the satellite-
manipulator system remains stationary during the manipulator motion. Chaser satellite 
equipped with a manipulator is a nonholonomic system (Ratajczak and Tchoń, 2020). 

The gripper is located at the end of the last link of the manipulator and its position in Π𝑖𝑖𝑖𝑖𝑖𝑖 is 
given by 

𝐫𝐫𝑔𝑔 = �
𝑟𝑟𝑥𝑥𝑔𝑔
𝑟𝑟𝑦𝑦𝑔𝑔
� = 𝐫𝐫𝑐𝑐ℎ + 𝐑𝐑𝑐𝑐ℎ𝐫𝐫𝑚𝑚

(Π𝑐𝑐ℎ) + �𝐑𝐑𝑖𝑖𝐥𝐥𝑖𝑖
(Π𝑖𝑖)

3

𝑖𝑖=1

 , (7) 

where 𝐫𝐫𝑚𝑚 is the position of Π1 (the manipulator mounting point) with respect to the satellite 
CoM, 𝐥𝐥𝑖𝑖 is the position of the (𝑖𝑖 + 1)-th manipulator joint with respect to the 𝑖𝑖-th joint, and 
𝐑𝐑𝑐𝑐ℎ and 𝐑𝐑𝑖𝑖 are the 2D rotation matrices (defined with respect to Π𝑖𝑖𝑖𝑖𝑖𝑖) of the chaser satellite 
and the i-th joint, respectively. The superscript in brackets denotes the frame of reference in 
which the vector is expressed. Vectors are expressed in the inertial frame Π𝑖𝑖𝑖𝑖𝑖𝑖 unless stated 
otherwise. The origin of Π𝑖𝑖𝑖𝑖𝑖𝑖 can be located in any arbitrarily selected position (the position 
of the CoM of the satellite-manipulator system is constant with respect to Π𝑖𝑖𝑖𝑖𝑖𝑖). In the 
considered planar case, the orientation of the gripper is expressed by 

𝜓𝜓𝑔𝑔 = 𝜓𝜓𝑐𝑐ℎ + �𝜃𝜃𝑖𝑖

3

𝑖𝑖=1

 . (8) 

By differentiating (7) and (8) with respect to time, we obtain the expressions for the gripper 
linear and angular velocity, 𝐯𝐯𝑔𝑔 and 𝜔𝜔𝑔𝑔, respectively. These expressions can be presented as 

 �
𝐯𝐯𝑔𝑔
𝜔𝜔𝑔𝑔� = 𝐉𝐉𝑐𝑐ℎ �

𝐯𝐯𝑐𝑐ℎ
𝜔𝜔𝑐𝑐ℎ

� + 𝐉𝐉𝑚𝑚𝛉̇𝛉, (9) 

where 𝐉𝐉𝑐𝑐ℎ is the Jacobian of the chaser satellite, while 𝐉𝐉𝑚𝑚 is the standard Jacobian of the fixed-
base manipulator. Taking into account the assumption of zero momentum and angular 
momentum, we can present the following relationship between the velocities of manipulator 
joints and the velocity of the gripper:  

 𝛉̇𝛉 = 𝐉𝐉𝐷𝐷−1 �
𝐯𝐯𝑔𝑔
𝜔𝜔𝑔𝑔�, (10) 

where 𝐉𝐉𝐷𝐷 is the Dynamic Jacobian of the manipulator (3 × 3 matrix). This Jacobian takes into 
account the influence of the manipulator motion on the state of the satellite (Yoshida, 1994).  
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3. THE OVF METHOD 

3.1. Problem definition 
The general idea of the OVF method is presented in Figure 1. To perform grasping of a non-
cooperative target satellite, the gripper mounted on the manipulator has to be moved to a 
specific position and orientation with respect to the target object. The goal of the trajectory 
planning is to find a trajectory of the manipulator that allows to obtain the desired position 
and orientation of the gripper (𝐩𝐩𝑇𝑇 and 𝜓𝜓𝑇𝑇, respectively). During the approach phase, the 
manipulator has to avoid collisions with the elements of the target satellite. Elements of 
complex shape can be approximated by simple geometric objects. We are considering m 
rectangular obstacles: Γ1, Γ2, …, Γ𝑚𝑚. The position of the geometrical centre of the i-th obstacle 
is denoted by 𝐩𝐩Γ𝑖𝑖, while the orientation of this obstacle with respect to Π𝑖𝑖𝑖𝑖𝑖𝑖 is denoted by 𝛼𝛼𝑖𝑖. 
Width and height of the i-th obstacle are denoted by 𝑤𝑤𝑖𝑖 and ℎ𝑖𝑖, respectively. For the purpose 
of collision detection, the manipulator links are treated as line segments. The width of the 
links can be taken into account by introducing save zones around the obstacles. 

3.2. Attractive force and torque 
In the approach proposed by Rybus (2022), the virtual attractive force is responsible for 
driving the gripper towards the desired position. Here, we propose a simple extension of the 
OVF method that allows to obtain both the desired gripper position and the desired gripper 
orientation. We follow the approach described by Elahres et al. (2021), and we introduce an 
attractive torque that acts on the last link of the manipulator and allows to obtain the desired 
orientation of the gripper. The virtual force and torque that act on the gripper are given by 

 �𝐅𝐅𝐴𝐴𝜏𝜏𝐴𝐴
� = �

�𝐅𝐅𝑎𝑎𝜏𝜏𝑎𝑎
� , if  ∀ 𝑖𝑖 ∈ {1, 2, … ,𝑚𝑚}: 𝑑𝑑𝑖𝑖 > 𝑑𝑑𝑎𝑎 ∨ 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ ∩ Γ𝑖𝑖 = ∅ 

𝟎𝟎, if  ∃ 𝑖𝑖 ∈ {1,2, … ,𝑚𝑚}: 
              

𝑑𝑑𝑖𝑖 ≤ 𝑑𝑑𝑎𝑎 ∧ 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ ∩ Γ𝑖𝑖 ≠ ∅  ,
 (11) 

where 𝑑𝑑𝑖𝑖 = ‖(𝐩𝐩𝑟𝑟)𝑖𝑖 − (𝐩𝐩𝐷𝐷)𝑖𝑖‖ is the closest distance between the manipulator and the i-th 
obstacle, (𝐩𝐩𝑟𝑟)𝑖𝑖 denotes the point on the manipulator that is closest to the obstacle Γ𝑖𝑖, (𝐩𝐩𝐷𝐷)𝑖𝑖 
denotes the point on the obstacle Γ𝑖𝑖 that is closest to the manipulator, 𝑑𝑑𝑎𝑎 is the threshold value 
of 𝑑𝑑𝑖𝑖 and 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ denotes the line segment between the current and the desired positions of the 
gripper. A simple algorithm that calculates distances between the line segments defined by the 
positions of manipulator kinematic pairs and sides of rectangular obstacles is used to find 
(𝐩𝐩𝑟𝑟)𝑖𝑖 and (𝐩𝐩𝐷𝐷)𝑖𝑖. The 𝐅𝐅𝐴𝐴 and 𝜏𝜏𝐴𝐴 are equal to zero if for any obstacle Γ𝑖𝑖, the distance 𝑑𝑑𝑖𝑖 is 
smaller than 𝑑𝑑𝑎𝑎 and if this obstacle intersects with the line segment 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ (intersection occurs 
when there is a non-empty set of points that belong to the line segment 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ and to the 
obstacle Γ𝑖𝑖). 𝐅𝐅𝑎𝑎 and 𝜏𝜏𝑎𝑎 are given by the following expressions: 

 𝐅𝐅𝑎𝑎 = 𝑔𝑔𝐴𝐴1�𝑒𝑒−𝑔𝑔𝐴𝐴2�𝐩𝐩𝑇𝑇−𝐫𝐫𝑔𝑔� + 𝑔𝑔𝐴𝐴3�
𝐩𝐩𝑇𝑇−𝐫𝐫𝑔𝑔
�𝐩𝐩𝑇𝑇−𝐫𝐫𝑔𝑔�

 , (12) 
 

 𝜏𝜏𝑎𝑎 = 𝑔𝑔𝐴𝐴1�𝑒𝑒−𝑔𝑔𝐴𝐴4�𝜓𝜓𝑇𝑇−𝜓𝜓𝑔𝑔� + 𝑔𝑔𝐴𝐴5�, (13) 

where 𝑔𝑔𝐴𝐴1, 𝑔𝑔𝐴𝐴2, 𝑔𝑔𝐴𝐴3, 𝑔𝑔𝐴𝐴4 and 𝑔𝑔𝐴𝐴5 are the constant coefficients that are used to tune the OVF 
algorithm. Equation (13) is a new element introduced in the OVF method. This equation 
allows to apply the OVF method in the considered scenario of the grasping manoeuvre. The 
value of 𝐅𝐅𝑎𝑎 depends on the distance between the desired position and the current position of 
the gripper, while the value of 𝜏𝜏𝑎𝑎 depends on the difference between the current orientation 
and the desired orientation of the gripper. The idea that the amplitude of the attractive force 
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depends on the distance and should be determined using the exponential function was 
introduced by Volpe and Khosla (1987). In the OVF method, the coefficients in (12) and (13) 
are selected in such a way that the value of the attractive force is approximately constant 
when the gripper is far away from the desired position. As the gripper gets closer to the 
desired position, the value of the attracting force increases. This allows to find a solution of 
the trajectory planning problem even when the desired position is close to the surface of the 
obstacle. Moreover, the proposed approach allows to obtain very small final positioning error.  

3.3. Repulsive force 
In the OVF method, each obstacle generates a vector field. The repulsive force that acts on the 
manipulator results from the vector fields generated by multiple obstacles. Only the collisions 
between the manipulator links and external obstacles located in the manipulator workspace 
are taken into account. Self-collisions between the manipulator links and collisions between 
the manipulator links and the elements of the chaser satellite are not considered. The approach 
presented in this section is based on the original formulation of the OVF method described by 
Rybus (2022). 

The vector field of the obstacle Γ𝑖𝑖 is constructed from the potential field that surrounds this 
obstacle. The Force Impliquant une Répulsion Artificielle en Surface (FIRAS) potential 
function (Khatib, 1986) is used to calculate the value of the potential for the point (𝐩𝐩𝑟𝑟)𝑖𝑖 (the 
point on the manipulator that is closest to the obstacle Γ𝑖𝑖): 

 𝑈𝑈𝑖𝑖 = �
       𝑢𝑢𝑖𝑖 ,   if 0 < ��𝐩𝐩𝑟𝑟

(Γ𝑖𝑖)�
𝑖𝑖
− �𝐩𝐩𝐷𝐷

(Γ𝑖𝑖)�
𝑖𝑖
� < 𝑑𝑑0  

  
0,   otherwise                                       ,

 (14) 

where the superscript (Γ𝑖𝑖) indicates that the position of the given point is expressed in ΠΓ𝑖𝑖, 
while 𝑑𝑑0 is a constant parameter that describes the effective range of the potential field. 𝑢𝑢𝑖𝑖 is 
given by the following expression: 

 𝑢𝑢𝑖𝑖 = 𝑔𝑔𝑃𝑃
2
� 1

��𝐩𝐩𝑟𝑟
�Γ𝑖𝑖��

𝑖𝑖
−�𝐩𝐩𝐷𝐷

�Γ𝑖𝑖��
𝑖𝑖
�
− 1

𝑑𝑑0
�

2

, (15) 

where 𝑔𝑔𝑝𝑝 is a constant coefficient. To obtain the direction pointing away from the obstacle Γ𝑖𝑖, 
we calculate the gradient of the scalar potential field as follows: 

 𝛈𝛈𝑖𝑖 = ∇𝑈𝑈𝑖𝑖. (16) 
The following expression is used to calculate the direction perpendicular to the gradient of the 
potential field: 

 𝛇𝛇𝑖𝑖 = 𝐓𝐓𝛾𝛾 �𝛾𝛾𝑖𝑖
𝜋𝜋
2
�𝛈𝛈�𝑖𝑖, (17) 

where the symbol ^ denotes the unit vector (𝛈𝛈�𝑖𝑖 = 𝛈𝛈𝑖𝑖
‖𝛈𝛈𝑖𝑖‖

), 𝐓𝐓𝛾𝛾 is the 2D rotation matrix, while the 
parameter 𝛾𝛾𝑖𝑖 ∈ {−1,1} defines the direction of the vector 𝛇𝛇𝑖𝑖. The selection of 𝛾𝛾𝑖𝑖 for given 
initial conditions and for a given set of obstacles depends on 𝐩𝐩𝑇𝑇. Various combinations of 𝛾𝛾𝑖𝑖 
must be checked to find the solution of the trajectory planning problem. The number of 
possible combinations depends on the number of obstacles and is equal to 2m. Values of 𝛾𝛾𝑖𝑖 
coefficients in the z-th set are obtained with the following equation: 

 𝛾𝛾𝑖𝑖 = (−1)�
𝑧𝑧+2𝑖𝑖−1−1

2𝑖𝑖−1
�, (18) 
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where ⌊∙⌋ denotes the floor function. The resultant direction of the force is defined by the unit 
vector 𝛖𝛖�𝑖𝑖, where 𝛖𝛖𝑖𝑖 is given by 

 𝛖𝛖𝑖𝑖 = �
                     𝛈𝛈�𝑖𝑖 + 𝑔𝑔ℎ𝛇𝛇�𝑖𝑖 ,            if  𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ ∩ Γ𝑖𝑖 = ∅  
−tan−1�𝑔𝑔𝑤𝑤(𝑑𝑑𝑖𝑖−𝑑𝑑𝜐𝜐)�

0.5𝜋𝜋
𝛈𝛈�𝑖𝑖 + 𝑔𝑔ℎ𝛇𝛇�𝑖𝑖 , if  𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ ∩ Γ𝑖𝑖 ≠ ∅  ,

 (19) 

where 𝑔𝑔𝑤𝑤 and 𝑔𝑔ℎ are constant coefficients, while 𝑑𝑑𝑣𝑣 is a constant parameter that describes the 
distance from the obstacle at which 𝛖𝛖𝑖𝑖 changes its direction.  
If the i-th obstacle does not lie between the current position of the gripper and the desired 
position (the set of points belonging to the line segment 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ and to the obstacle Γ𝑖𝑖 is empty), 
then 𝛖𝛖𝑖𝑖 is calculated as a sum of vectors 𝛈𝛈�𝑖𝑖 (vector defined by the gradient of the potential 
field) and 𝛇𝛇�𝑖𝑖 (vector parallel to the lines of the potential field). Vector 𝛇𝛇�𝑖𝑖 is multiplied by a 
weight coefficient 𝑔𝑔ℎ which influences the direction of 𝛖𝛖𝑖𝑖 (low value of 𝑔𝑔ℎ results in a 
direction that points away from the obstacle, while high values result in a direction that moves 
the manipulator around the obstacle). If the gripper is in close proximity to the obstacle that 
lies between the gripper and the desired position, then the manipulator motion results only 
from the vector field of that obstacle. In such a situation, the manipulator is guided around the 
obstacle at the defined distance (this is ensured by the first term of (19) under the condition 
that 𝐫𝐫𝑔𝑔𝐩𝐩𝑇𝑇������ ∩ Γ𝑖𝑖 ≠ ∅). 

The i-th obstacle acts on the point on the manipulator that is closest to this obstacle, (𝐩𝐩𝑟𝑟)𝑖𝑖, 
with the virtual repulsive force 

 (𝐅𝐅𝑅𝑅)𝑖𝑖 = 𝑔𝑔𝑅𝑅1�−𝑒𝑒−𝑔𝑔𝑅𝑅2�𝐩𝐩𝑇𝑇−𝐫𝐫𝑔𝑔� + 𝑔𝑔𝑅𝑅3�𝑈𝑈𝑖𝑖𝛖𝛖�𝑖𝑖, (20) 

where 𝑔𝑔𝑅𝑅1, 𝑔𝑔𝑅𝑅2 and 𝑔𝑔𝑅𝑅3 denote constant coefficients. The value of the repulsive force depends 
on the distance between the desired position and the current position of the gripper. The value 
of this force decreases as the distance decreases. The presented approach allows to plan a 
trajectory even if 𝐩𝐩𝑇𝑇 lies very close to the obstacle. 

3.4. Trajectory planning 
The motion of the manipulator is directed by the virtual attractive and repulsive forces. The 
following equation is used to calculate the desired motion of manipulator joints under the 
influence of these forces: 

𝛉̇𝛉𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐉𝐉𝐷𝐷−1𝑔𝑔𝑣𝑣 �
𝐅𝐅𝐴𝐴
𝜏𝜏𝐴𝐴
� + �𝐉𝐉𝐷𝐷𝑖𝑖

# 𝑔𝑔𝑣𝑣𝐓𝐓𝛾𝛾(𝜑𝜑𝑖𝑖)(𝐅𝐅𝑅𝑅)𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 , (21) 

where 𝛉̇𝛉𝑑𝑑𝑑𝑑𝑑𝑑 = �𝜃̇𝜃1𝑑𝑑𝑑𝑑𝑑𝑑 𝜃̇𝜃2𝑑𝑑𝑑𝑑𝑠𝑠 𝜃̇𝜃3𝑑𝑑𝑑𝑑𝑑𝑑�
𝑇𝑇
, # denotes the Moore–Penrose pseudoinverse, 𝑔𝑔𝑣𝑣 is a 

constant coefficient and 𝐉𝐉𝐷𝐷𝑖𝑖 is the Dynamic Jacobian computed for the point (𝐩𝐩𝑟𝑟)𝑖𝑖. This point 
may not lie on the last link of the manipulator, but on the j-th link. Thus, in the calculation of 
𝐉𝐉𝐷𝐷𝑖𝑖 , only those joints are taken into account which are located between the manipulator 
mounting point and the link on which (𝐩𝐩𝑟𝑟)𝑖𝑖 lies. In such a case, the position of (𝐩𝐩𝑟𝑟)𝑖𝑖 is 
considered as an end point of the j-th link. Matrix 𝐓𝐓𝛾𝛾 is used to transform (𝐅𝐅𝑅𝑅)𝑖𝑖 from Π𝑖𝑖𝑖𝑖𝑖𝑖 to 
the local coordinate frame fixed at the beginning of the j-th link. Orientation of this link is 
denoted by 𝜑𝜑𝑖𝑖 (index i indicates that the considered link is closest to the i-th obstacle). 
The control torques that result in the desired motion of the manipulator joints are calculated 
from the following equation:  

 𝛕𝛕𝑚𝑚 = 𝑔𝑔𝑢𝑢�𝛉̇𝛉𝑑𝑑𝑑𝑑𝑑𝑑 − 𝛉̇𝛉�, (22) 
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where 𝑔𝑔𝑢𝑢 is a constant coefficient. Equation (4) is solved with the fourth order Runge–Kutta 
(RK IV) method to determine the state of the system after the application of the control torque 
given by (22). Calculation of the attractive and repulsive forces is repeated for the new state 
obtained from the RK IV method. This process is continued until the gripper reaches the 
desired position and orientation or until the maximal number of repetitions is reached. As a 
result, we obtain the reference manipulator trajectory. The trajectory is smoothed and the 
distribution of the points that form the trajectory is changed with the method described by 
Rybus and Seweryn (2018). At this stage, the time of motion can be selected arbitrarily and 
the trajectory can be adjusted. Finally, we obtain the reference gripper position and orientation 
as a function of time: �𝐫𝐫𝑔𝑔(𝑡𝑡)�

𝑟𝑟𝑟𝑟𝑟𝑟
, �𝜓𝜓𝑔𝑔(𝑡𝑡)�

𝑟𝑟𝑟𝑟𝑟𝑟
.  

3.5. Closed-loop controller 
To apply the OVF method on a real system, it is necessary to implement a closed-loop 
controller responsible for trajectory tracking. To control the gripper in the Cartesian space, we 
use the following control law: 

 𝛉̇𝛉 = 𝐉𝐉𝐷𝐷−1𝑔𝑔𝑐𝑐  ��
�𝐫𝐫𝑔𝑔�𝑟𝑟𝑟𝑟𝑟𝑟
�𝜓𝜓𝑔𝑔�𝑟𝑟𝑟𝑟𝑟𝑟

� − �
𝐫𝐫𝑔𝑔
𝜓𝜓𝑔𝑔�� . (23) 

The gripper position and orientation error are multiplied by a constant gain 𝑔𝑔𝑐𝑐 to obtain the 
desired instantaneous velocity of the gripper. This velocity is multiplied by the inverse of the 
Dynamic Jacobian (this approach cannot be used when the manipulator is close to dynamic 
singularities). Proportional–Integral–Derivative (PID) controllers are responsible for tracking 
the joint positions obtained by integration of the joint velocities calculated from (23). 

4. VALIDATION OF THE OVF METHOD 

4.1. Test-bed description and parameters of the system 
The practical application of the OVF method is demonstrated in experiments performed on 
the planar air-bearing microgravity simulator operated at the Space Research Centre of the 
Polish Academy of Sciences. This test-bed consists of a granite plate (2 m ×  3 m). The plate 
is flat and precisely levelled. The mock-up of the chaser satellite is equipped with the 3 DoF 
planar manipulator. The mock-up and the manipulator are mounted on planar air-bearings that 
use a thin film of pressurised air to provide frictionless motion on the surface of the granite 
plate. The microgravity conditions are simulated in the horizontal plane. The air-bearings are 
supplied with air from a gas canister located on the chaser mock-up. The closed-loop control 
system is implemented on the main computer (ATSAMA5D36), which is also located on the 
chaser mock-up. Direct Current (DC) motors are used to drive the joints of the manipulator. 
Each joint is equipped with a harmonic drive and an absolute optical encoder. All actuators 
have separate drivers connected to a CAN-bus. External vision system is used to provide 
measurements of the gripper position and orientation in Π𝑖𝑖𝑖𝑖𝑖𝑖. Detailed description of this test-
bed was presented by Basmadji et al. (2019). The mass of the chaser satellite is: 58.69 kg, 
while its mass moment of inertia is: 2.418 kg ∙ m2. The position of the manipulator mounting 
point with respect to the chaser CoM is 𝐫𝐫𝑚𝑚

(Π𝑐𝑐ℎ) = [0.377 m −0.001 m]𝑇𝑇. Properties of the 
manipulator are given in Table 1. Inertia properties of the satellite and the manipulator were 
obtained before the test campaign with the use of a simple identification procedure. 
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Table 1. Mass and geometrical properties of the manipulator 

Parameter Unit Link 1 Link 2 Link 3 

Length m 0.45 0.45 0.31 

Mass kg 2.81 2.82 4.64 

CoM position in Π𝑖𝑖 m � 0.136
−0.002� � 0.134

−0.001� �0.151
0 � 

Mass moment of inertia kg ∙ m2 0.0637 0.0635 0.0515 

4.2. Scenario definition 
The following scenario was selected for demonstration of the OVF method. The origin of 
Π𝑖𝑖𝑖𝑖𝑖𝑖 is located on the test-bed surface in a position that coincides with the origin of the 
coordinate frame of the external vision system used in the experiments. The initial position of 
the chaser satellite CoM is 𝑟𝑟𝑥𝑥𝑐𝑐ℎ(𝑡𝑡 = 0) = 0.2 m and 𝑟𝑟𝑦𝑦𝑐𝑐ℎ(𝑡𝑡 = 0) = 0.7 m, while the initial 
orientation of the chaser is 𝜓𝜓𝑐𝑐ℎ(𝑡𝑡 = 0) = 0. The initial configuration of the manipulator is 
defined as 𝜃𝜃1(𝑡𝑡 = 0) = 80.50°, 𝜃𝜃2(𝑡𝑡 = 0) = −119.51° and 𝜃𝜃3(𝑡𝑡 = 0) = −51.00°. For this 
initial configuration of the system, we obtain the following position and orientation of the 
gripper: 𝑟𝑟𝑥𝑥𝑔𝑔(𝑡𝑡 = 0) = 1.00 m, 𝑟𝑟𝑦𝑦𝑔𝑔(𝑡𝑡 = 0) = 0.55 m and 𝜓𝜓𝑔𝑔(𝑡𝑡 = 0) = −90°. In the 
considered scenario, there is one rectangular obstacle located inside the manipulator 
workspace. The centre of the obstacle Γ1 is in 𝐩𝐩Γ1 = [1.2 m 0.55 m]𝑇𝑇. The edges of this 
obstacle are parallel to the axes of Π𝑖𝑖𝑖𝑖𝑖𝑖 and have the following lengths: 𝑤𝑤1 = 0.12 m and 
ℎ1 = 0.22 m. The obstacle Γ1 represents an element of the non-cooperative target satellite. 
The gripper has to reach the desired grasping point located on the opposite side of the obstacle 
Γ1: 𝐩𝐩𝑇𝑇 = �𝑟𝑟𝑥𝑥𝑔𝑔�𝑡𝑡 = 𝑡𝑡𝑓𝑓� 𝑟𝑟𝑦𝑦𝑔𝑔�𝑡𝑡 = 𝑡𝑡𝑓𝑓��

𝑇𝑇
= [1.35 m 0.55 m]𝑇𝑇. To perform the grasping 

operation, the gripper has to reach the following final orientation: 𝜓𝜓𝑇𝑇 = 𝜓𝜓𝑔𝑔�𝑡𝑡 = 𝑡𝑡𝑓𝑓� = −90°. 
The time allocated for realisation of the trajectory is arbitrarily set to 𝑡𝑡𝑓𝑓 = 16 s. 

Values of the parameters and the constant coefficients in the OVF method were selected by a 
trial and error method for the given parameters of the system. The following values were used 
to solve the presented trajectory planning problem: 𝑔𝑔𝐴𝐴1 = 100, 𝑔𝑔𝐴𝐴2 = 70, 𝑔𝑔𝐴𝐴3 = 2.5, 𝑔𝑔𝐴𝐴4 =
70, 𝑔𝑔𝐴𝐴5 = 2.5, 𝑑𝑑𝑎𝑎 = 0.1 m, 𝑔𝑔𝑝𝑝 = 0.005, 𝑑𝑑0 = 10 m, 𝑔𝑔𝑤𝑤 = 104, 𝑔𝑔ℎ = 1.5, 𝑑𝑑𝑣𝑣 = 0.02 m, 
𝑔𝑔𝑅𝑅1 = 5, 𝑔𝑔𝑅𝑅2 = 50, 𝑔𝑔𝑅𝑅3 = 1, 𝑔𝑔𝑣𝑣 = 1, 𝑔𝑔𝑢𝑢 = 3.125. Trajectory planning was performed 
offline before the beginning of the experiments. Laptop with Intel Core i7-10510U CPU (2.30 
GHz) and 16 GB RAM was used for this purpose.  

4.3. Results of experiments 
The test campaign on the planar air-bearing microgravity simulator consisted of 10 repetitions 
of the experiment. No real obstacle was used in experiments to avoid the risk of a collision in 
case of problems with the proper realisation of the planned trajectory. The results of six 
experiments were selected for further analysis and are presented in this section, while the 
results of four experiments were rejected due to the occurrence of large external disturbances 
or problems with data recording. The reference gripper trajectory planned with the OVF 
method and the trajectories obtained in the experiments are shown in Figure 2 on the XY 
plane. The X and Y components of the gripper position are shown in Figure 3, where the 
reference position and the desired position (that corresponds to the position of the selected 
grasping point) are also presented. The orientation of the gripper is shown on the left panel of 
Figure 4, while the orientation of the chaser satellite mock-up is shown on the right panel of 
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Figure 4. The angular positions of the manipulator joints measured with encoders during the 
experiments are presented in Figure 5. These positions are compared with the positions 
obtained in simulations performed for the reference gripper trajectory. Frames captured by the 
camera of the external vision system are shown in Figure 6. This camera is mounted above the 
surface of the granite table. Gripper final positioning errors obtained in numerical simulations 
for the reference trajectory and in the experiments performed on the air-bearing microgravity 
simulator are presented in Table 2. 

 
Figure 2. Gripper trajectory on the XY plane 

 

  
Figure 3. Gripper position: X component (left) and Y component (right) 
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Figure 4. Gripper orientation (left) and chaser satellite orientation (right) 

     
Figure 5. Angular positions of manipulator joints 

 
Figure 6. Chaser satellite mock-up equipped with the 3 DoF manipulator during one of the 

experiments 

Table 2. Gripper final positioning errors (absolute values) 

Parameter Unit Reference 
(planning) 

Experiments 

Min. Max. Average 

Position X m 0.0008 0.0005 0.0078 0.0043 

Position Y m 0.0018 0.0064 0.0171 0.0106 

Orientation deg 0.1319 0.0999 1.2999 0.5666 
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5. DISCUSSION 
The OVF method was able to find the collision-free trajectory in the given scenario. As 
demonstrated by Rybus (2022), the proposed method is able to solve difficult trajectory 
planning problems. The selected set of parameters and constant coefficients should allow 
successful planning in a wide range of conditions. However, there is no simple method and no 
automatic algorithm for selecting the values of parameters and coefficients in the OVF 
method. The process of selecting these values using the trial and error method is tedious and 
lengthy. Finding a collision-free trajectory in a different scenario may require a different set 
of values. This is a disadvantage of the proposed approach. Moreover, if the solution exists 
for a given problem, it is not guaranteed that the OVF method will be able to find this 
solution. In very difficult scenarios, the OVF method and other methods based on potential 
fields may fail to find a solution due to the fact that the considered system is nonholonomic. 
In such scenarios, other methods should be used, for example, the RRT algorithm (Rybus, 
2020). However, the time required by the RRT method is much longer than the time required 
by the OVF method (Rybus, 2022). 
The reference gripper trajectory obtained with the OVF method in the considered scenario is 
smooth. The results of the test campaign confirm that the OVF method can be successfully 
applied for a real system operating in simulated microgravity conditions. As it is evident from 
Figure 3 and from the left panel of Figure 4, the gripper closely followed the reference 
trajectory. The closed-loop controller implemented on the chaser satellite on-board computer 
was able to ensure satisfactory trajectory tracking despite disturbances acting on the system 
(e.g. force resulting from non-perfect levelling of the granite plate). The delay in the trajectory 
tracking in the Cartesian space results from the application of a simple proportional control 
law. The maximal position and orientation errors at the end of the trajectory (Table 2) are 
small and fall within the tolerance of the gripper. Thus, in every experiment, the gripper 
reached the position and orientation that would allow to perform a successful capture 
operation. In none of the experiments, the links of the manipulator moved through the area 
occupied by the obstacle. Thus, no collision would occur in experiments. 
The trajectory tracking was performed in the Cartesian space, and closed-loop controller was 
compensating the gripper position and orientation errors. Thus, due to disturbances acting on 
the system, there are moderate differences between the manipulator trajectories in the joint 
space obtained in individual experiments (Figure 5). The positions of the manipulator joints 
obtained in the experiments and the positions obtained in the numerical simulation performed 
for the reference gripper trajectory also differ, but these differences are expected (the system 
was not following the trajectory defined in the joint space).  
The influence of the manipulator motion on the position and orientation of the chaser satellite 
mock-up is clearly visible in Figure 6. Moderate differences between the chaser satellite 
mock-up orientation obtained in individual experiments result from the disturbances and from 
the fact that the trajectories in the joint space were different. The changes of the chaser 
satellite mock-up orientation measured in the experiments are relatively close to the changes 
of the orientation obtained in numerical simulations performed for the reference gripper 
trajectory (the right panel of Figure 4). As the satellite-manipulator system was free-floating, 
these results show the correctness of the system modelling and the identification of its 
parameters. 
The further development of the OVF method will focus on extending the presented approach 
to a spatial (three-dimensional) case, in which the motion of the system is not limited to one 
plane. The three-dimensional case is much more complex, as the chaser satellite could rotate 
around any axis and its orientation should be described by Euler angles or quaternions. In this 
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case, a three-element vector would describe the desired position of the gripper, while another 
three-element vector would describe its desired orientation. The vector field would have to be 
constructed in three dimensions and additional parameters would be required to describe this 
field. It is also planned to take into account the possibility of self-collisions between the 
manipulator links. Additional scenarios will be considered to better evaluate the performance 
of the proposed method. 

6. CONCLUSIONS 
The OVF method takes into account the fact that in the microgravity conditions, the state of 
the satellite is influenced by the motion of the manipulator. The dynamic equations of the 
satellite-manipulator system are used during trajectory planning. The OVF method can be 
applied to plan a collision-free trajectory of a manipulator in difficult scenarios. The modified 
version of the OVF method presented in this paper allows to obtain the desired position and 
orientation of the gripper. To perform the grasping manoeuvre, the gripper has to be 
positioned in a specific point and aligned with the grasping interface. Thus, the modification 
introduced in the OVF method allows this method to be applied in the planned ADR missions. 
The OVF method was used to plan a collision-free trajectory of a 3 DoF manipulator mounted 
on a chaser satellite mock-up. The practical applicability of the presented method was 
successfully demonstrated in the experiments performed in simulated microgravity 
conditions. The gripper followed the reference trajectory despite disturbances acting on the 
system. The final position and orientation of the gripper obtained in experiments were close to 
the desired position and orientation required for the capture operation. The OVF method may 
not be able to find the solution of the trajectory planning problem in some very difficult 
scenarios. However, this method requires less computational time than the RRT algorithm. 
Moreover, unlike the RRT algorithm, the OVF method is fully deterministic and it will 
always produce the same result. This is an important issue when assessing the possibility of 
the practical application of the OVF method in the future orbital missions. 

Acknowledgements. This paper was partially supported by the Polish National Centre for 
Research and Development project no. LIDER/19/0117/L-10/18/NCBR/2019. 

REFERENCES 
Basmadji F.L., Chmaj G., Rybus T., Seweryn K. (2019) Microgravity testbed for the 
development of space robot control systems and the demonstration of orbital maneuvers, 
Proceedings of SPIE: Photonics Applications in Astronomy, Communications, Industry, and 
High-Energy Physics Experiments, 111763V, Wilga, Poland. 
Benevides J.R., Grassi V. (2015) Autonomous path planning of free-floating manipulators 
using RRT-based algorithms, Proc. 12th Latin American Robotics Symposium and 3rd 
Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Minas Gerais, Brazil, 139-144. 
Biesbroek R., Innocenti L., Wolahan A., Serrano S.M. (2017) e. Deorbit – ESA’s active 
debris removal mission, Proc. 7th European Conference on Space Debris, Darmstadt, 
Germany. 
Biesbroek R., Aziz S., Wolahan A., Cipolla S., Richard-Noca M., Piguet L. (2021) The 
Clearspace-1 mission: ESA and Clearspace team up to remove debris, Proc. 8th European 
Conference on Space Debris, Darmstadt, Germany. 
Bonnal C., Ruault J.M., Desjean M.C. (2013) Active debris removal: Recent progress and 
current trends, Acta Astronautica, Vol. 85, 51-60. 



185 
 

Dubowsky S., Papadopoulos E. (1993) The kinematics, dynamics, and control of free-flying 
and free-floating space robotic systems, IEEE Transactions on Robotics and Automation, 
Vol. 9, No. 5, 531-543. 
Elahres M., Fonte A., Poisson G. (2021) Evaluation of an artificial potential field method in 
collision-free path planning for a robot manipulator, Proc. 2nd International Conference on 
Robotics, Computer Vision and Intelligent Systems, Valletta, Malta, 92-102. 
Estable S., Pruvost C., Ferreira E., Telaar J., Fruhnert M., et al. (2020) Capturing and 
deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.deorbit Consolidation 
Phase study, Journal of Space Safety Engineering, Vol. 7, No. 1, 52-66. 
Flores-Abad A., Ma O., Pham K., Ulrich S. (2014) A review of space robotics technologies 
for on-orbit servicing, Progress in Aerospace Sciences, Vol. 68, 1-26. 
Gao X., Jia Q., Sun H., Chen G. (2011) Research on path planning for 7-DOF space 
manipulator to avoid obstacle based on A* algorithm, Sensor Letters, Vol. 9, No. 4, 1515-
1519. 
Junkins J.L., Schaub H. (1997) An instantaneous eigenstructure quasivelocity formulation for 
nonlinear multibody dynamics, The Journal of the Astronautical Sciences, Vol. 45, No. 3, 
279-295. 
Khatib O. (1986) The potential field approach and operational space formulation in robot 
control, In: Narendra K.S. (ed.), Adaptive and Learning Systems, Springer, Boston, 367-377. 
Kindracki J., Tur K., Paszkiewicz P., Mężyk Ł., Boruc Ł., Wolański P. (2017) Experimental 
research on low-cost cold gas propulsion for a space robot platform, Aerospace Science and 
Technology, Vol. 62, 148-157. 
Kowalczyk W., Michałek M., Kozłowski K. (2012) Trajectory tracking control with obstacle 
avoidance capability for unicycle-like mobile robot, Bulletin of the Polish Academy of 
Sciences: Technical Sciences, Vol. 60, No. 3, 537-546. 
Lin C.C., Chuang J.H. (2003) Potential-based path planning for robot manipulators in 3-D 
workspace, Proc. IEEE International Conference on Robotics and Automation (ICRA'2003), 
Taipei, Taiwan, vol. 3, 3353-3358. 
Liou J.C., Johnson N.L., Hill N.M. (2010) Controlling the growth of future LEO debris 
populations with active debris removal, Acta Astronautica, Vol. 66, No. 5-6, 648-653. 
Masoud A.A., Al-Shaikhi A. (2015) Time-sensitive, sensor-based, joint planning and control 
of mobile robots in cluttered spaces: A harmonic potential approach, Proc. 54th IEEE 
Conference on Decision and Control (CDC'2015), Osaka, Japan, 2761-2766. 
Masoud A.A., Bayoumi M.M. (1993) Robot navigation using the vector potential approach, 
Proc. IEEE International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, 
USA, vol. 1, 805-811. 
Misra G., Bai X. (2017) Optimal path planning for free-flying space manipulators via 
sequential convex programming, Journal of Guidance, Control, and Dynamics, Vol. 40, No. 
11, 3019-3026. 
Mukherjee R., Nakamura Y. (1991) Nonholonomic redundancy of space robots and its 
utilization via hierarchical liapunov functions, Proc. American Control Conference 
(ACC'1991), Boston, USA, 1491-1496. 
Murtaza A., Pirzada S.J.H., Xu T., Jianwei L. (2020) Orbital debris threat for space 
sustainability and way forward, IEEE Access, Vol. 8, 61000-61019. 



186 
 

Pamosoaji A.K., Hong K.S. (2013) A path-planning algorithm using vector potential 
functions in triangular regions, IEEE Transactions on Systems, Man, and Cybernetics: 
Systems, Vol. 43, No. 4, 832-842. 
Park M.G., Lee M.C. (2003) A new technique to escape local minimum in artificial potential 
field based path planning, KSME International Journal, Vol. 17, 1876-1885. 
Ratajczak J., Tchoń K. (2020) Normal forms and singularities of non-holonomic robotic 
systems: A study of free-floating space robots, Systems and Control Letters, Vol. 138, 
104661. 
Rybus T. (2018) Obstacle avoidance in space robotics: Review of major challenges and 
proposed solutions, Progress in Aerospace Sciences, Vol. 101, 31-48. 
Rybus T. (2020) Point-to-point motion planning of a free-floating space manipulator using the 
Rapidly-exploring Random Trees (RRT) method, Robotica, Vol. 38, No. 6, 957-982. 
Rybus T. (2022) The Obstacle Vector Field (OVF) method for collision-free trajectory 
planning of free-floating space manipulator, Bulletin of the Polish Academy of Sciences: 
Technical Sciences, Vol. 70, No. 2, e140691. 
Rybus T., Seweryn K. (2016) Planar air-bearing microgravity simulators: review of 
applications, existing solutions and design parameters, Acta Astronautica, Vol. 120, 239-259. 
Rybus T., Seweryn K. (2018) Zastosowanie metody sztucznych pól potencjału do planowania 
trajektorii manipulatora satelitarnego [in polish: Application of the artificial potential field 
method for trajectory planning of space manipulator], In: Tchoń K., Zieliński C. (eds.), Prace 
Naukowe Politechniki Warszawskiej: Elektronika, Vol. 196,  Oficyna Wydawnicza 
Politechniki Warszawskiej, Warszawa, 61-74. 
Rybus T., Wojtunik M., Basmadji F.L. (2022) Optimal collision-free path planning of a free-
floating space robot using spline-based trajectories, Acta Astronautica, Vol. 190, 395-408. 
Rybus T., Seweryn K., Oleś J., Basmadji F.L., Tarenko K., Moczydłowski R., Barciński T., 
Kindracki J., Mężyk Ł., Paszkiewicz P., Wolański P. (2019) Application of a planar air-
bearing microgravity simulator for demonstration of operations required for an orbital capture 
with a manipulator, Acta Astronautica, Vol. 155, 211-229. 
Seweryn K., Banaszkiewicz M. (2008) Optimization of the trajectory of a general free-flying 
manipulator during the rendezvous maneuver, Proc. AIAA Guidance, Navigation, and Control 
Conference and Exhibit (AIAA-GNC’2008), Honolulu, HI, USA. 
Shan M., Guo J., Gill E. (2016) Review and comparison of active space debris capturing and 
removal methods, Progress in Aerospace Sciences, Vol. 80, 18-32. 
Umetani Y., Yoshida K. (1989) Resolved motion rate control of space manipulators with 
generalized Jacobian matrix, IEEE Transactions on Robotics and Automation, Vol. 5, No. 3, 
303-314. 
Volpe R., Khosla P. (1987) Artificial potentials with elliptical isopotential contours for 
obstacle avoidance, Proc. 26th IEEE Conference on Decision and Control (CDC'1987), Los 
Angeles, CA, USA, 180-185. 
Wang M., Luo J., Fang J., Yuan J. (2018) Optimal trajectory planning of free-floating space 
manipulator using differential evolution algorithm, Advances in Space Research, Vol. 61, 
No. 6, 1525-1536. 



187 
 

Xu Y. (1993) The measure of dynamic coupling of space robot systems, Proc. IEEE 
International Conference on Robotics and Automation (ICRA'1993), Atlanta, GA, USA, vol. 
3, 615-620. 
Yanoshita Y., Tsuda S. (2009) Space Robot Path Planning for Collision Avoidance, Proc. 
International MultiConference of Engineers and Computer Scientists (IMECS'2009), Hong 
Kong. 
Yoshida K. (1994) Space robotics research activity with Experimental Free-Floating Robot 
Satellite (EFFORTS) simulators, In: Yoshikawa, T. and Miyazaki, F. (eds.), Experimental 
Robotics III. Lecture Notes in Control and Information Sciences, Vol. 200. Springer, Berlin, 
Heidelberg, 561-578. 

Received: 2022-12-14 

Reviewed: 2023-02-08 (undisclosed name); 2023-04-16 (E. Jarzębowska) 

Accepted: 2023-05-23 


	1. Introduction
	2. DYNAMICS OF THE FREE-FLOATING SATELLITE-MANIPULATOR SYSTEM
	3. ThE OVF METHOD
	3.1. Problem definition
	3.2. Attractive force and torque
	3.3. Repulsive force
	3.4. Trajectory planning
	3.5. Closed-loop controller

	4. VALIDATION OF THE OVF METHOD
	4.1. Test-bed description and parameters of the system
	4.2. Scenario definition
	4.3. Results of experiments

	5. DISCUSSION
	6. Conclusions
	References

