PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitational deterioration of Diesel power plant cylinder liner

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The generating station in which diesel engine is used as a prime mover for generating electrical energy is known as diesel power plant. The cylinders liner are cylindrical component that are fixed inside the engine block. The function of the cylinder liners is to retain the working fluid and to guide the piston. Most diesel power plant uses wet-cylinder liners that are exposed to intensive cavitation. The paper aimed at studying the behavior of the cylinder liners that can lead to cavitation. The analysis involves, modeling and simulation in using Solidworks software. The analysis shows that the cylinders are subjected to harmonic vibration resulting to momentary separation of the coolant from the cylinder wall, creating a pressure difference around the coolant surface which forms air bubbles. These bubbles explode at an extreme velocity. The explosion of these bubbles release surface energy known as cavitation. The energy hammers the cylinder liner surface thereby removing minute particles of metal from the surface of the vibrating cylinder leading to cavitational deterioration. The paper hereby calls on automotive designers to take critical measures in designing of; cylinder liner, water jacket and the entire cooling system, in order to control this phenomenon.
Rocznik
Strony
239--245
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical, Engineering Nuhu Bamalli Polytechnic, Zaria, Nigeria
  • Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria
autor
  • Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria
  • Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria
Bibliografia
  • 1. Rajput P.K. (2009). A Text Book of Power Plant Engineering. 5th ed. Laxmi Publicatios (p) Ltd, pp. 119-120.
  • 2. DOE (1993). Fundamental Handbook. Mechanical Science. U.S. Department of Energy FSC-6910, Washington, D.C. 20585. pp. 1-2.
  • 3. Bako S., Usman T., Bori I. and Nasir A. (2019). Simulation of a Wet Cylinder Liner, SSRG International Journal of Mechanical Engineering. Vol. 6, No. 4. pp. 12-17.
  • 4. Dineshkumar S. and Sriprashanth V. (2015). Liner Material Thermal Analysis for Diesel Engines. International Journal of Engineering Research and General Science. Vol. 6, No. 3. pp. 124-135.
  • 5. Kumar M.A., Prasad-Rao A.A.V., Narayana-Rao J.H. (2015). . Design and Analysis of Dry Cylinder Liners Used in Diesel Engines. International Journal of Science Engineering and Advance Technology. Vol. 3, No. 8. pp. 518-526.
  • 6. Tang K.Y. and Ouyang G.Y. (2008).Advanced Internal Combustion Engine [M]. Beijing: National Defense Industry Press.
  • 7. Bo Z., Ping Z., Xu G., Yin W., Xiao-Bei C., Xin-Yuan H., Xin-Rui G. (2019). simulation Research on Cavitation Flow Characteristics of Highly Enhanced Diesel Engine Cooling System. Iop Conference Series: Earth And Environmental Science. Vol. 237, No. 04, pp. 1-10
  • 8. Ouyang G.Y. and Bao C.H. (2011).Internal Combustion Engine [M]. Beijing: National Defense Industry Publication.
  • 9. Kurmi R.S. and Gupta J.K. (2004). A Text Book of Machine Design. 14th Reprint. Eurasia Publishing house (Pvt) Ltc. pp. 1010-1011.
  • 10. Divya M. and Mohan-Rao P.V.J. (2018). Coupled Field Analysis Of Cylinder Sleeve (Coated/Uncoated) With Respect to Piston Using MATLAB & FEA. International Journal of Advance Engineering and Research Development. Vol. 5, No. 10, pp. 60-67.
  • 11. Raja A.K., Anit P.S. and Manish D. (2006). Power Plant Engineering. 3rd ed. New Delhi, New International Limited Publisher. pp. 250-251.
  • 12. Andrew D. and Andrew P. (1995) Westwood Cylinder Liner Catalog. Droitwich. Part No. WCL 40GFL.
  • 13. Ioannis G., Dimitrios K., Panagiotis X., Theodoros G. (2009). Cavitation Erosion Of Wet-Sleeve Liners: Case Study Technological Educational Institute of Larissa, Faculty of Agricultural Technology, Department of Agricultural Machinery & Irrigation, 41110, Larissa, Greece. pp. 1-8
  • 14. Mirajkar P.B., Kanase K.A. and N.K. Chhapkhane (2013). Cylinder Liner Bore Distortion Estimation During Assembly of Diesel Engine with FEA. International Journal on Mechanical Engineering and Robotics. Vol. 1, No. 2, pp. 66-73
  • 15. Hutching F.R. and Paul M.U. (1981). Cavitation Damage to Diesel Engine Cylinder from Failure Analyaia; The British Engine Technical Reports. Ohio.
  • 16. Yu K.Z. and Jiu G.H. (1981). Hammitt F.G. Cavitation Erosion of Diesel Engine Liners. W.E. Lay Automotive Laboratory, Department of Mechanical Engineering and Appkied Mechanics, College of Engineering, North Campus, Unversity of Michingam Ann Arbor, Mi 48109 (USA). pp. 329-335.
  • 17. Stephen G. (2012). Cavitation: Causes, Effects, Mitigation and Application. Msc. Rensselaer Polytechnic Institute Hartford, Connecticut Fall. pp. 1-5
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3650b678-6c32-4753-bfc2-3823e33369d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.