PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flotation separation of dolomite and apatite using polyaspartic acid as inhibitor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, polyaspartic acid (PASP) was exploited as a novel dolomite depressant for flotation separation of apatite and dolomite. A series of tests with Zeta potential, FTIR and XPS were used to reveal the inhibitory mechanism of PASP on dolomite. The microflotation test illustrated that PASP has a strong inhibitory impact on dolomite, and little effect on the floatability of apatite in the pH range of 9-11. When using 2.7 Mg/L PASP as the depressant under sodium oleate (NaOl) system, the flotation recovery of dolomite dropped dramatically to 9.95%, and the recovery of apatite remained at about 88.27% at pH 10. Both dolomite and apatite have calcium ion on the surface. The calcium ion on the surface of apatite were strongly inhibited and repelled by the localized anions, while the important role on the surface of dolomite was positively charged magnesium ion and localized calcium species. PASP could ionize carboxylate ion under alkaline conditions, which could chemically chelate with the exposed metal ion and be adsorbed on the surface of dolomite. And then prevent the further adsorption of NaOl onto dolomite, which greatly weaken the floatability of dolomite and enhanced the flotation separation of the two minerals.
Rocznik
Strony
113--126
Opis fizyczny
Bibliogr. 55 poz., rys. kolor.
Twórcy
autor
  • College of Mining, Guizhou University, Guiyang 550025, China
autor
  • Guizhou Academy of Sciences, Guiyang, 550001
  • National & Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang, Guizhou, 550025, China
  • Guizhou Key Laboratory of Comprehensive Utilization of Non-metallic Mineral Resources, Guiyang 550025, China
Bibliografia
  • ABOUZEID, A.M. 2008. Physical and thermal treatment of phosphate ores — An overview. Int. J. Miner. Process. 85.
  • AMIRECH, A., BOUHENGUEL, M., OUACHI, S. 2018. Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors. Arab. J. Geosci. 11.
  • ALINE, P.L.N., ANT, N.E.C.P., ARTHUR, P.C., WANYR, R.F. 2019. Effect of alkyl chain length of amines on fluorapatite and aluminium phosphates floatabilities. Journal of Materials Research and Technology 8.
  • CAO, Q., ZOU, H., CHEN, X., WEN, S. 2019. Flotation selectivity of N-hexadecanoylglycine in the fluorapatite–dolomite system. Miner. Eng. 131, 353-362.
  • CAO, Q., CHENG, J., WEN, S., LI, C., BAI, S., LIU, D. 2015. A mixed collector system for phosphate flotation. Miner. Eng. 78, 114-121.
  • CHEN, C., SUN, W., ZHU, H., LIU, R. 2021. A novel green depressant for flotation separation of scheelite from calcite. T. Nonferr. Metal Soc. 31, 2493-2500.
  • CHEN, C., HU, Y., ZHU, H., SUN, W., QIN, W., LIU, R., GAO, Z. 2019. Inhibition performance and adsorption of polycarboxylic acids in calcite flotation. Miner. Eng. 133, 60-68.
  • CHEN, Q., ZHANG, Q., HART, B.R., YE, J. 2020. Study on the effect of collector and inhibitor acid on the floatability of collophane and dolomite in acidic media by TOF-SIMS and XPS. Surf. Interface Anal. 52, 355-363.
  • CHEN, T., ZENG, D., ZHOU, S. 2018. Study of Polyaspartic Acid and Chitosan Complex Corrosion Inhibition and Mechanisms. Pol. J. Environ. Stud. 27, 1441-1448.
  • CHEN, W., FENG, Q., ZHANG, G., YANG, Q., ZHANG, C. 2017. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite. Miner. Eng. 113, 1-7.
  • CHEN, Y., CHEN, X., LIANG, Y. 2020. Synthesis of polyaspartic acid/graphene oxide grafted copolymer and evaluation of scale inhibition and dispersion performance. Dlam. Relat. Mater 108, 107949.
  • CHEN, Y., LONG, Y., LI, Q., CHEN, X., XU, X. 2019. Synthesis of high-performance sodium carboxymethyl cellulosebased adsorbent for effective removal of methylene blue and Pb (II). Int. J. Biol. Macromol. 126, 107-117.
  • DENG, R., YANG, X., HU, Y., KU, J., ZUO, W., MA, Y. 2018. Effect of Fe (II) as assistant depressant on flotation separation of scheelite from calcite. Miner. Eng. 118, 133-140.
  • DONG, L., WEI, Q., QIN, W., JIAO, F.2020. Selective adsorption of sodium polyacrylate on calcite surface: Implications for flotation separation of apatite from calcite. Sep. Purif. Technol. 241.
  • FILIPPOVA, I.V., FILIPPOV, L.O., LAFHAJ, Z., BARRES, O., FORNASIERO, D. 2018. Effect of calcium minerale reactivity on fatty acids adsorption and flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 545, 157-166.
  • GHARABAGHI, M., IRANNAJAD, M., NOAPARAST, M. 2010. A review of the beneficiation of calcareous phosphate ores using organic acid leaching. Hydrometallurgy 103, 96-107.
  • HOANG, D.H., KUPKA, N., PEUKER, U.A., RUDOLPH, M. 2018. Flotation study of fine grained carbonaceous sedimentary apatite ore – Challenges in process mineralogy and impact of hydrodynamics. Miner. Eng. 121, 196-204.
  • HOANG, D.H., HEITKAM, S., KUPKA, N., HASSANZADEH, A., PEUKER, U.A., RUDOLPH, M. 2019. Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chem. Eng. Res. Des. 142, 100-110.
  • KABA, O.B., FILIPPOV, L.O., FILIPPOVA, I.V., BADAWI, M. 2021. Interaction between fine particles of fluorapatite and phosphoric acid unraveled by surface spectroscopies. Powder Technol. 382, 368-377.
  • LI, X., ZHANG, Q., HOU, B., YE, J., MAO, S. and LI, X. 2017. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol 318, 224-229.
  • LI, X.L.X.B., LIU, Z.L.Z.H., ZHANG, Q.Z.Q., MAO, S.M.S., LI, L.L.L.J. 2014. The Effect of Ca2+, Mg2+, SO42- and PO43- on Phosphate Ore Flotation. Advanced Materials Research, 1670-1673.
  • JIAO, F., DONG, L., QIN, W., LIU, W., HU, C.2019. Flotation separation of scheelite from calcite using pectin as depressant. Miner. Eng. 136, 120-128.
  • JONG, K., HAN, Y., RYOM, S. 2017. Flotation mechanism of oleic acid amide on apatite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 523, 127-131.
  • LIU, X., RUAN, Y., LI, C., CHENG, R. 2017. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. Int. J. Miner. Process. 167, 95-102.
  • LIU, X., LUO, H., CHENG, R., LI, C., ZHANG, J. 2017. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Miner Eng 109, 162-168.
  • LIU, Z., SUN, Y., ZHOU, X., WU, T., TIAN, Y., WANG, Y. 2011. Synthesis and scale inhibitor performance of polyaspartic acid. J. Environ. Sci.-China 23, S153-S155.
  • MARTINS, J.G., CAMARGO, S.E.A., BISHOP, T.T., POPAT, K.C., KIPPER, M.J., MARTINS, A.F. 2018. Pectinchitosan membrane scaffold imparts controlled stem cell adhesion and proliferation. Carbohyd. Polym. 197, 47-56.
  • NAN, N., ZHU, Y., HAN, Y. 2019. Flotation performance and mechanism of α-Bromolauric acid on separation of hematite and fluorapatite. Miner. Eng. 132, 162-168.
  • PAN, Z., WANG, Y., WEI, Q., CHEN, X., JIAO, F., QIN, W. 2020. Effect of sodium pyrophosphate on the flotation separation of calcite from apatite. Sep. Purif. Technol. 242, 116408.
  • RUAN, Y., HE, D., CHI, R. 2019. Review on Beneficiation Techniques and Reagents Used for Phosphate Ores. Minerals-Basel 9.
  • SHAKOOR, M.B., YE, Z., CHEN, S. 2021. Engineered biochars for recovering phosphate and ammonium from wastewater: A review. Sci Total Environ 779, 146240.
  • SIS, H., CHANDER, S. 2003. Reagents used in the flotation of phosphate ores: a critical review. Miner. Eng. 16.
  • SUN, K., LIU, T., ZHANG, Y., LIU, X., WANG, B., XU, C., ZANIN, M. 2017. Application and Mechanism of Anionic Collector Sodium Dodecyl Sulfate (SDS) in Phosphate Beneficiation. Minerals-Basel 7.
  • WANG, J. 2010. Research and practice of technology of heavy-media separation of collophane. Huagong Kuangwu Yu Jiagong, 4-6.
  • WANG, T., FENG, B., GUO, Y., ZHANG, W., RAO, Y., ZHONG, C., ZHANG, L., CHENG, C., WANG, H., LUO, X. 2020. The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant. Miner. Eng. 159, 106635.
  • WANG, X., ZHANG, Q. 2020. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 371, 55-63.
  • WEI, Q., JIAO, F., DONG, L., LIU, X., QIN, W. 2021. Selective depression of copper-activated sphalerite by polyaspartic acid during chalcopyrite flotation. T. Nonferr. Metal Soc. 31, 1784-1795.
  • WEI, Z., FU, J., HAN, H., SUN, W., YUE, T., WANG, L., SUN, L. 2020. A Highly Selective Reagent Scheme for Scheelite Flotation: Polyaspartic Acid and Pb-BHA Complexes. Minerals-Basel 10.
  • XIE, J., LI, X., MAO, S., LI, L., KE, B., ZHANG, Q. 2018. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (001) surface: A first-principles calculations. Appl Surf Sci 444, 699-709.
  • YANG, B., YIN, W., ZHU, Z., WANG, D., HAN, H., FU, Y., SUN, H., CHU, F., YAO, J. 2019. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol. 354, 358-368.
  • YANG, B., ZHU, Z., YIN, W., SUN, Q., SUN, H., HAN, H., SHENG, Q., YAO, J. 2020. Selective adsorption of an ecofriendly and efficient depressant PBTCA onto dolomite for effective flotation of fluorapatite from dolomite. Chem. Eng. J. 400.
  • YANG, B., CAO, S., ZHU, Z., YIN, W., SHENG, Q., SUN, H., YAO, J., CHEN, K. 2020. Selective flotation separation of apatite from dolomite utilizing a novel eco-friendly and efficient depressant for sustainable manufacturing of phosphate fertilizer. J. Clean. Prod., 124949.
  • YANG, B., ZHU, Z., SUN, H., YIN, W., HONG, J., CAO, S., TANG, Y., ZHAO, C., YAO, J. 2020. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant. Miner. Eng. 156.
  • YANG, B., YIN, W., ZHU, Z., SUN, H., SHENG, Q., FU, Y., YAO, J., ZHAO, K. 2021. Differential adsorption of hydrolytic polymaleic anhydride as an eco-friendly depressant for the selective flotation of apatite from dolomite. Sep. Purif. Technol. 256, 117803.
  • YANG, L., LI, Y., QIAN, B., HOU, B. 2015. Polyaspartic acid as a corrosion inhibitor for WE43 magnesium alloy. Journal of Magnesium and Alloys 3, 47-51.
  • YE, J., WANG, X., LI, X., MAO, S., SHEN, Z., ZHANG, Q. 2018. Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions. J. Disper. Sci. Technol. 39, 1655-1663.
  • YE, J., ZHANG, Q., LI, X., WANG, X., KE, B., LI, X., SHEN, Z. 2018. Effect of the morphology of adsorbed oleate on the wettability of a collophane surface. Appl. Surf. Sci. 444, 87-96.
  • YU, H., WANG, H., SUN, C. 2018. Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions. International Journal of Mining Science and Technology 28, 453-459.
  • YU, J., GE, Y., HOU, J. 2016. Behavior and mechanism of collophane and dolomite separation using alkil hydroxamic acid as a flotation collector. Physicochem. Probl. Mineral Porcess.. 52, 155-169.
  • ZENG, M., YANG, B., GUAN, Z., ZENG, L., LUO, H., DENG, B. 2021. The selective adsorption of xanthan gum on dolomite and its implication in the flotation separation of dolomite from apatite. Appl. Surf. Sci. 551, 149301.
  • ZEINO, A., ABDULAZEEZ, I., KHALED, M., JAWICH, M.W., OBOT, I.B. 2018. Mechanistic study of polyaspartic acid (PASP) as eco-friendly corrosion inhibitor on mild steel in 3% NaCl aerated solution. J. Mol. Liquid 250, 50-62.
  • ZHANG, Y., ZHU, H., ZHU, J., YANG, F., HE, H., QIN, Z., SHI, Q., PAN, G. 2021. Experimental and emulational study on the role of ion in coal adsorbing kerosene: Water-kerosene interface and catenoid characteristics. Fuel 294.
  • ZHANG, B., ZHOU, D., LV, X., XU, Y., CUI, Y. 2013. Synthesis of polyaspartic acid/3-amino-1H-1,2,4-triazole-5-carboxylic acid hydrate graft copolymer and evaluation of its corrosion inhibition and scale inhibition performance. Desallnation 327, 32-38.
  • ZHONG, B.H, WU, D. Q, YANG, H.L, YANG, X.S., HUANG, M.Y, 2009. Discussion on the utilization of low-grade phosphate rock in China. Inorganic Salt Industry 41, 1-5.
  • ZHOU, F., YANG, L., ZHANG, L., CAO, J., ZHANG, H. 2019. Investigation of decomposition of dolomite and distribution of iodine migration during the calcination-digestion process of phosphate ore. Hydrometallurgy 188, 174-181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-364b432c-d2cb-433b-ad9e-61a353c2f680
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.