PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dentinogenesis imperfecta : hardness and Young’s modulus of teeth

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dentinogenesis imperfecta type II (DI-II) is the most common dental genetic disease with reported incidence 1 in 8000. Elasticity and hardness of the enamel of teeth are important values which are connected with their resistance to attrition. It is hypothesized that values of physical properties for healthy teeth and teeth with DI-II are different. The aim of the study was to investigate some physical properties of teeth extracted from patients with DI-II in comparison with normal teeth. The material of the study was six teeth: three lower molars, with clinical signs of DI-II, which were extracted due to complications of pulp inflammation and three other lower molars which were extracted for orthodontic reasons – well formed, without any signs of pathology. The surfaces of DI-II and normal teeth were tested on the CSM Instruments Scratch Tester machine (producer CSEM Switzerland) by Oliver & Pharr method. The indenter used was Vicker’s VG-73 diamond indenter. Additionally, the Scanning Electron Microscopy (SEM) analysis of the surface of the teeth with DI-II was made. Vickers hardness of the teeth with dental pathology (DI-II) was seven times smaller, and Young’s modulus six times smaller than those of healthy teeth. The parameters of hardness and elasticity of enamel of teeth with clinical diagnosis of DI-II were very much smaller than in normal teeth and because of that can be responsible for attrition.
Rocznik
Strony
65--69
Opis fizyczny
Bibliogr. 25 poz., wykr., il.
Twórcy
autor
  • Prosthetic Department, Jagiellonian University, Collegium Medicum Cracow, Poland
autor
  • Prosthetic Department, Jagiellonian University, Collegium Medicum Cracow, Poland
autor
  • Prosthetic Department, Jagiellonian University, Collegium Medicum Cracow, Poland
  • Prosthetic Department, Jagiellonian University, Collegium Medicum Cracow, Poland
  • AGH – University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Cracow, Poland
Bibliografia
  • [1] WITKOP C.J. Jr.. Manifestations of genetic diseases in the human pulp, Oral Surg. Oral Med. Oral Pathol., 1971, Vol. 32, 278–316.
  • [2] SKILLEN W.G., Histologic and clinical study of hereditary opalescent dentin, J. Am. Dent. Assoc., 1937, Vol. 24, 1426–1433.
  • [3] FINN S.B., Hereditary opalescent dentin: I, An analysis of the literature on hereditary anomalies of tooh colour, J. Am. Dent. Assoc., 1933, Vol. 25, 1240–1249.
  • [4] HODGE H.C., FINN S.B., Hereditary opalescent: A dominant hereditary teeth anomaly in man, J. Heredit., 1938, Vol. 29, 359–364.
  • [5] SUBRAMANIAM P., MATHEW S., SUGNANI S.N., Dentinogenesis imperfecta: a case report, J. Indian Soc. Pedod. Prev. Dent., 2008, Vol. 26, 85–87.
  • [6] GIBEK J., PAWŁOWSKA E., KLIMEK L., SZCZEPAŃSKA J., Studies of microhardness of hard dental tissues in the course of amelogenesis imperfecta based on the chosen model of transgenic mice, J. Stoma., 2013, Vol. 66, 10–23.
  • [7] BARRON M.J., MCDONNELL S.T., MACKIE I., DIXON M.J., Hereditary dentine disorders: dentinogenesis imperfecta and dentine dysplasia, Orphanet J. Rare Dis., 2008, Vol. 3, 31.
  • [8] YAVUZ I., ZULKUF AKDAG M., DASDAG S., ZELAL ULKU S., ZEKI AKKUS Z., Influences of extremely low frequency magnetic fields on mineral and trace elements content of rat teeth, African Journal of Biotechnology, 2008, Vol. 7, 3811–3816.
  • [9] YIN J., ZHANG Y., BAI Y., WANG B., YANG K., Expression patterns of homeobox genes in different teeth of the minipig embryo, African Journal of Biotechnology, 2011, Vol. 10, 5831–5837.
  • [10] de COSTER P.J., CORNELISSEN M., de PAEPE A., MARTENS L.C., VRAL A., Abnormal dentin structure in two novel gene mutations [COL1A1. Arg134Cys] and [ADAMTS2, Trp795-to-ter] causing rare type I collagen disorders, Arch. Oral Biol., 2007, Vol. 52, 101–109.
  • [11] SHIELDS E.D., BIXLER D., EL-KAFRAWY A.M., A proposed classification for heritable human dentine defects with a description of a new entity, Arch. Oral Biol., 1973, Vol. 18, 843–853.
  • [12] CHUNG S.M., YAP A.U., TSAI K.T., YAP F.L., Elastic modulus of resin-based dental restorative materials: a microindentation approach. J. Biomed. Mater. Res. B Appl. Biomater., 2005, Vol. 72, 246–253.
  • [13] CHLADEK W.T., KARASINSKI A., Experimental evaluation of occlusal forces, Acta Bioeng. Biomech., 2001, Vol. 3, 25–38.
  • [14] PIENIAK D., NIEWCZAS A.M., Phenomenological evaluation of fatigue cracking of dental restorations under conditions of cyclic mechanical loads, Acta Bioeng. Biomech., 2012, Vol. 14, 9–17.
  • [15] WHITENACK L.B., SIMKINS D.C. JR., MOTTA P.J., HIRAI M., KUMAR A., Young’s modulus and hardness of shark tooth biomaterials, Arch. Oral Biol., 2010, Vol. 55, 203–209.
  • [16] OLIVER W.C., PHARR G.M., A new improved technique for determining hardness and elastic modulus using load and sensing indentation experiments, J. Mater. Res., 1992, Vol. 7, 1564–1582.
  • [17] ANJUM A., OTSUKI M., MATIN K., TAGAMI J., Preservation in the liquid media produces alterations in enamel surface properties, J. Dent., 2009, Vol. 37, 884–890.
  • [18] CUY J.L., MANN A.B., LIVI K.J., TEAFORD M.F., WEIHS T.P., Nanoindentation mapping of mechanical properties of human molar teeth enamel, Arch. Oral Biol., 2002, Vol. 47, 281–291.
  • [19] HE L.H., SWAIN M.V., Nanoindentation derived stress-strain properties of dental materials, Dental. Materials, 2007, Vol. 23, 814–821.
  • [20] MEREDITH N., SHERRIFF M., SETCHELL D.J., SWANSON S.A., Measurement of the microhardness and Young’s modulus of human enamel and dentine using an indentation technique, Arch. Oral Biol., 1996, Vol. 41, 539–545.
  • [21] STAINES M., ROBINSON W.H., HOOD J.A.A., Spherical indentation of tooth enamel, J. Mater. Sci., 1981, Vol. 16, 2551–2556.
  • [22] MAHONEY E., HOLT A., SWAIN M., KILPATRICK N., The hardness and modulus of elasticity of primary molar teeth: an ultra-microindentation study, J. Dent., 2000, Vol. 28, 589–594.
  • [23] WILLEMS G., CELIS J.P., LAMBRECHTS P., BRAEM M., VANHERLE G., Hardness and Young’s modulus determined by nanoindetation techniquie of filler particles of dental restorative materials compared with human enamel, J. Biomed. Mater. Res. B Appl. Biomater., 1993, Vol. 27, 747–755.
  • [24] KINNEY J.H., BALOOCH M., Hardness and Young’s modulus of human peritubular and intertubular dentine, Arch. Oral Biol., 1996, Vol. 41, 9–13.
  • [25] WIECZOREK A., LOSTER J., Analysis of the mineral composition of permanent teeth in dentinogenesis imperfecta type II, J. Stoma., 2012, Vol. 65, 404–410.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-364a2de5-3fa2-4df5-87cc-9300c598ac46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.