PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of Seismic Kappa Parameter and Near-Surface Attenuation in Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The goal of this study is to estimate the kappa (κ) parameter for a group of 12 broadband stations, located in different geological structures in Morocco, a country with moderate seismic activity. In this study, the kappa, κ has been obtained from the spectral analysis of the shear waves of 42 earthquakes, recorded in Morocco. Using 321 seismograms recorded in the period between 2009 and 2012 by the Picasso Project, the average κ-values have been computed from the horizontal components. For each station, the relationship between κ values and the hypocentral distance was determined. We separately investigated and studied the distance dependence of the stations located on soft soil and hard rock sites. The estimated average factor of the κ value ranges from 0.0682 for the hard sites to 0.0763 for the soft sites, with 0.072 as an average value. The lack of a significant correlation found between κ and magnitude at all stations considered in this study suggests that kappa is mainly dependent on local site characteristics. To the best of our knowledge, no studies related to kappa parameter estimation have been published for this region. The results generated in this study can be used for the seismic hazard evaluation of Morocco.
Słowa kluczowe
Twórcy
  • Laboratory of Applied Sciences, National School of Applied Sciences, Abdelmalek Essaadi University, 03 Al. Hoceima, Morocco
  • National Center for Seismology, Ministry of Earth Sciences, New Delhi, 110003, India
  • Laboratory of Solid State Physics, Department of Physics, Faculty of Science Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 1796, Fez-Atlas, Morocco
autor
  • Laboratory of Engineering Sciences and Applications, National School of Applied Sciences, Abdelmalek Essaadi University, 03 Al Hoceima, Morocco
  • Laboratory of Applied Science, National School of Applied Sciences, Mohammed First University, Oujda 60000, Morocco
autor
  • University of Lorraine, ENSG, UMR 7359-GeoRessources, Nancy Cedex, France
  • Earth Science Department, Scientific Institute, Mohamed V University, P.O. Box 1014, Rabat, Morocco
  • Mechanics and Materials Team, Faculty of Science, Mohammed V University, P.O. Box 1014, Rabat, Morocco
Bibliografia
  • 1. Anderson J.G., Hough S.E. 1984. A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bulletin of the Seismological Society of America, 74, 1969–1993.
  • 2. Anderson J.G., Humphrey J. 1991. A least-squares method for objective determination of earthquake source parameters. Seismological Research Letters, 62, 201–209.
  • 3. Andrieux J., Fontbote J.M., Mattauer M. 1971. Sur un modèle explicatif de l’Arc de Gibraltar. Earth and Planetary Science Letters, 12(2), 191–198.
  • 4. Arab O., Azguet R., Ouchen I., El Fellah Y., Harnafi M., Sebbani, et al. 2020. Attenuation of seismic coda waves in the Rif area, northern Morocco.Journal of African Earth Sciences, 165, 103815.
  • 5. Awasthi D.K., Shende V.J., Gupta I.D. 2010. Estimation of κ factor for two types of sites in northeast India. Indian Geotechnical Conference, 16–18.
  • 6. Bay F., Fäh D., Malagnini L., Giardini D. 2003. Spectral shear-wave ground-motion scaling in Switzerland. Bulletin of the Seismological Society of America, 93(1), 414–429.
  • 7. Bay F., Wiemer S., Fäh D., Giardini D. 2005. Predictive ground motion scaling in Switzerland: best estimates and uncertainties. Journal of Seismology, 9(2), 223–240.
  • 8. Benouar D. 1994. Materials for the investigation of the seismicity of Algeria and adjacent regions during the twentieth century. Annali de geofisica, 37(4), 609–835.
  • 9. Biasi G.P., Smith K.D. 2001. Site effects for seismic monitoring stations in the vicinity of Yucca Mountain, Nevada. A report prepared for the US DOE/University and Community College System of Nevada (UCCSN) Cooperative Agreement. MOL20011204.0045. Nevada (US).
  • 10. Biro Y., Siyahi B., Akbas B. 2020. The spectral decay parameter κ (kappa) for hard rock strong ground motion stations in Turkey. 17th World Conference on Earthquake Engineering, 3–18.
  • 11. Boulanouar A., El Moudnib L., Harnafi M., Cherkaoui T. E., Rahmouni A., Boukalouch M., Sebbani J. 2013. Spatial variation of coda wave attenuation using aftershocks of the Al Hoceima earthquake of 24 February, 2004, Morocco. Natural Science, 5(8), 72.
  • 12.Boulanouar A., Moudnib L.E., Padhy S., Harnafi M., Villaseñor A., et al. 2018. Estimation of coda wave attenuation in Northern Morocco. Pure and Applied Geophysics, 175(3), 883–897.
  • 13. Chalouan A., Michard A., Kadiri K., Negro F., Lamotte D., Soto J.I., et al. 2008. Continental evolution: the geology of Morocco. Springer Berlin, Heidelberg.
  • 14. Chandler A.M., Lam N.T., Tsang H.H. 2006. Near surface attenuation modelling based on rock shear wave velocity profile. Soil Dynamics and Earthquake Engineering, 26, 1004–1014.
  • 15.Chang S.C., Wen K.L., Huang M.W., Kuo C.H., Lin, C. M., et al. 2019. The high-frequency Decay parameter (Kappa) in Taiwan. Pure and Applied Geophysics, 176(11), 4861–4879.
  • 16. De Capoa P., Di Staso A., Perrone V., Zaghloul M.N. 2007. The age of the foredeep sedimentation in the Betic–Rifian Mauretanian units: a major constraint for the reconstruction of the tectonic evolution of the Gibraltar Arc. Comptes Rendus Geoscience, 339(2), 161–170.
  • 17. Douglas J., Gehl P., Bonilla L.F., Gélis C. 2010. A κ model for mainland France. Pure and applied geophysics, 167(11), 1303–1315.
  • 18. De Lis Mancilla F., Stich D., Morales J., Julià J., Diaz J., et al. 2012. Crustal thickness variations in northern Morocco. Journal of Geophysical Research: Solid Earth, 117(B2).
  • 19. El Fellah Y., Bouskri G., Harnafi M., Abd El A.E.A.K., Timoulali Y., et al. 2019. Tracking regional heterogeneities through seismic ambient noise constrains: What Rayleigh wave tomography can tell about deep structures in northern Morocco. Journal of African Earth Sciences, 160, 103615.
  • 20. Fullea J., Fernandez M., Zeyen H., Vergés J. 2007. A rapid method to map the crustal and lithospheric thickness using elevation, geoid anomaly and thermal analysis. Application to the Gibraltar Arc System, Atlas Mountains and adjacent zones. Tectonophysics, 430(1–4), 97–117.
  • 21. Galindo‐Zaldivar J., Ercilla G., Estrada F. Catalán, M., d’Acremont E., et al. 2018. Imaging the growth of recent faults: The case of 2016–2017 seismic sequence sea bottom deformation in the Alboran Sea (Western Mediterranean). Tectonics, 37(8), 2513–2530.
  • 22. Herrmann R., Akinci A. 1999. Mid-America ground motion models, http://www.eas.slu.edu/People/RBHerrmann/MAEC/maecgnd.html
  • 23. Hough E., Anderson J.G. 1988. High-frequency spectra observed at Anza, California: Implications for Q structure. Bulletin of the Seismological Society of America, 78(2), 692–707.
  • 24. Humphrey J.R., Anderson J.G. 1992. Shear wave attenuation and site response in Guerrero Mexico. Bulletin of the Seismological Society of America, 81, 1622–1645.
  • 25. Kariche J., Meghraoui M., Timoulali Y., Cetin E., Toussaint R. 2018. The Al Hoceima earthquake sequence of 1994, 2004 and 2016: Stress transfer and poroelasticity in the Rif and Alboran Sea region. Geophysical Journal International, 212(1), 42–53.
  • 26. Khattach D., Houari M.R., Corchete V., Chourak M., El Gout R., Ghazala H. 2013. Main crustal discontinuities of Morocco derived from gravity data. Journal of Geodynamics, 68, 37–48.
  • 27. Kilb D., Biasi G., Anderson J., Brune J., Peng Z., Vernon F.L. 2012. A comparison of spectral parameter kappa from small and moderate earthquakes using southern California ANZA seismic network data. Bulletin of the Seismological Society of America, 102(1), 284–300.
  • 28. Kumar S., Kumar D., Rastogi B.K., Singh A.P. 2018. Kappa (κ) model for Kachchh region of Western India. Geomatics, Natural Hazards and Risk, 9(1), 442–455.
  • 29. Lai T.S., Mittal H., Chao W.A., Wu Y.M. 2016. A study on Kappa value in Taiwan using borehole and surface seismic array. Bulletin of the Seismological Society of America, 106(4), 1509–1517.
  • 30. Margaris B.N., Boore D.M. 1998. Determination of Δσ and κ0 from response spectra of large earthquakes in Greece. Bulletin of the Seismological Society of America, 88(1), 170–182.
  • 31. Mittal H., Sharma B., Chao W.A., Wu Y.M., Lin T.L., Chingtham P. 2022. A comprehensive analysis of attenuation characteristics using strong ground motion records for the Central Seismic Gap Himalayan Region, India.Journal of Earthquake Engineering, 26(5), 2599–2624.
  • 32. Mittal H., Sharma B., Sandhu M., Kumar D. 2021. Spatial distribution of high-frequency spectral decay factor kappa (κ) for Delhi, India. Acta Geophysica, 69(6), 2113–2127.
  • 33. Morley K. 1987. Origin of major cross element zone: Morocco Rif. Geology, 15, 761–764.
  • 34. Palmer S.M., Atkinson G.M. 2020. The high‐frequency decay slope of spectra (kappa) for M≥ 3.5 earthquakes on rock sites in Eastern and Western Canada. Bulletin of the Seismological Society of America, 110(2), 471–488.
  • 35. Perron V., Hollender F., Bard P.Y., Gélis C., Guyonnet‐Benaize C., Hernandez B., Ktenidou O.J. 2017. Robustness of Kappa (κ) Measurement in Low‐to‐Moderate Seismicity Areas: Insight from a Site‐Specific Study in Provence, France. Bulletin of the Seismological Society of America, 107(5), 2272–2292.
  • 36. Rinne L. 2021. Seismic wave attenuation and the spectral decay parameter κ (kappa) in crystalline bedrock at Olkiluoto, SW Finland. Master’s thesis, University of Helsink, Finland.
  • 37. Samaei M., Miyajima M., Yazdani A., Jaafari F. 2016. High Frequency Decay Parameter (Kappa) for Ahar–Varzaghan Double Earthquakes, Iran (MW 6.5 and 6.3). Journal of Earthquake and Tsunami, 10(2), 1640006.
  • 38. Seber D., Barazangi M., Ibenbrahim A., Demnati A. 1996. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif–Betic mountains. Nature, 379(6568), 785–790.
  • 39. Stanko D., Markušić S., Korbar T., Ivančić J. 2020. Estimation of the high-frequency attenuation parameter kappa for the Zagreb (Croatia) seismic stations. Applied Sciences, 10(24), 8974.
  • 40. Van Houtte C., Drouet S., Cotton F. 2011. Analysis of the origins of κ (kappa) to compute hard rock to rock adjustment factors for GMPEs. Bulletin of the Seismological Society of America, 101(6), 2926–2941.
  • 41. Wessel P., Smith W.H.F. 2004. Generic Mapping Tools Graphics.
  • 42. Wildi W. 1983. La chaîne tello-rifaine (Algérie, Maroc, Tunisie): structure, stratigraphie et évolution du Trias au Miocène. Revue de géographie physique et de géologie dynamique, 24(3), 201–297.
  • 43. Yadav R., Kumar D., Chopra S. 2018. The high frequency decay parameter κ (kappa) in the region of North East India. Open Journal of Earthquake Research 7, 141–159.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36497473-05de-46db-a626-e0e5c32d8890
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.