Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper is devoted to study robust efficiency in terms of variational inequality for a class of multi-dimensional multi-objective first-order PDE-constrained fractional control optimization problems with data uncertainty (MMFP). We derive a robust controlled vector variational inequality (VI) together with its weak form and discuss equivalence between the solutions of (VI) and (MMFP) via imposing the suitable assumptions. Later on, we study a sufficient condition for the robust weak efficient solution of (MMFP) to be its robust efficient solution under the strict convexity assumption and give some applications to illustrate the established results.
Czasopismo
Rocznik
Tom
Strony
349--377
Opis fizyczny
Bibliogr. 20 poz., rys., wzory
Twórcy
autor
- Department of Mathematics and Computing, Indian Institute of Technology, (Indian School of Mines), Dhanbad-826004, India
autor
- Department of Mathematics and Computing, Indian Institute of Technology, (Indian School of Mines), Dhanbad-826004, India
autor
- Department of Statistics and Operational Research, Faculty of SSCC and Communication, University of Cádiz, Cádiz-11003, Spain
Bibliografia
- [1] T. Antczak: On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. Journal of Global Optimization, 59(4), (2014), 757-785. DOI: 10.1007/s10898-013-0092-8
- [2] T. Antczak: Parametric approach for approximate efficiency of robust multiobjective fractional programming problems. Mathemarical Methods in the Applied Science, 44(14), (2021), 11211-11230. DOI: 10.1002/mma.7482
- [3] A. Baranwal, A. Jayswal and P. Kardam: Robust duality for the uncertain multitime control optimization problems. International Journal of Robust Nonlinear Control, 32(10), (2022), 5837-5847. DOI: 10.1002/rnc.6113
- [4] A. Ben-Tal and A. Nemirovski: Robust convex optimization. Mathematics of Operations Research, 23(4), (1998), 769-805. DOI: 10.1287/moor.23.4.769
- [5] P.K. Das and B. Kodamasingh: Generalized nonlinear 𝐹-variational inequality problems and equivalence theorem. Advances in Nonlinear Variational Inequalities, 16(1), (2013) 1-22.
- [6] F. Giannessi: Theorems of alternative, quadratic programs and complementarity problems. In: Variational Inequality and Complementarity Problems, John Wiley and Sons, Chichester, 151-86, 1980.
- [7] B.L. Gorissen: Robust fractional programming. Journal of Optimization Theory and Applications, 166(2), (2015), 508-528. DOI: 10.1007/s10957-014-0633-4
- [8] P. Hartman and G. Stampacchia: On some non-linear elliptic differential-functional equations. Acta Mathematica, 115 (1966), 271-310. DOI: 10.1007/BF02392210
- [9] A. Jayswal, S. Singh and A. Kurdi: Multitime multiobjective variational problems and vector variational-like inequalities. European Journal of Operational Research, 254(3), (2016), 739-745. DOI: 10.1016/j.ejor.2016.05.006
- [10] A. Jayswal and A. Baranwal: Robust approach for uncertain multi-dimensional fractional control optimization problems. Bulletin of the Malaysian Mathematical Sciences Society, 46(2), (2023), 1-11.
- [11] A. Jayswal and A. Baranwal: Relations between multidimensional interval-valued variational problems and variational inequalities. Kybernetika, 58(4), (2022), 564-577. DOI: 10.14736/kyb-2022-4-0564
- [12] M.H. Kim and G.S. Kim: On optimality and duality for generalized fractional robust optimization problems. East Asian Mathematical Journal, 31(5), (2015) 737-742. DOI: 10.7858/EAMJ.2015.054
- [13] G.H. Lin and Z.Q. Xia: Two projection-type algorithms for pseudo-monotone variational inequalities. Archives of Control Sciences, 10(3-4), (2000), 157-165.
- [14] Y. Liu: Variational inequalities and optimization problems. PhD thesis, University of Liverpool, 2015.
- [15] S.S. Manesh, M. Saraj, M. Alizadeh and M. Momeni: On robust weakly 𝜖-efficient solutions for multi-objective fractional programming problems under data uncertainty. AIMS Mathematics, 7(2), (2021), 2331-2347. DOI: 10.3934/math.2022132
- [16] R. Matusu and R. Prokop: Robust stability of systems with parametric uncertainty. Archives of Control Sciences, 18(1), (2008), 73-87.
- [17] V.T. Minhu and N. Afzulpurkar: Robust model predictive control for input saturated and softened state constraints. Asian Journal of Control, 7(3), (2005), 319-325. DOI: 10.1111/j.1934-6093.2005.tb00241.x
- [18] S. Treanţă: On some vector variational inequalities and optimization problems. AIMS Mathematics, 7(8), (2022), 14434-14443. DOI: 10.3934/math.2022795
- [19] S. Treanţă, T. Antczak and T. Saeed: On some variational inequality-constrained control problems. Journal of Inequalities and Applications, 2022(1), (2022), 1-17. DOI: 10.1186/s13660-022-02895-w
- [20] S. Treanţă, T. Antczak and T. Saeed: Connections between Non-Linear Optimization Problems and Associated Variational Inequalities. Mathematics, 11(6), (2023), 1314. DOI: 10.3390/math11061314
Uwagi
1. The research of the first author is financially supported by SERB-DST, New Delhi, India, under the project MATRICS (No. MTR/2021/000002).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3645b71a-1b91-4793-882b-c127292b989a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.