PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of Optimal Noise Hazard Control Strategy With Budget Constraint

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An analytical design procedure to determine optimal noise hazard control strategies for industrial facilities is presented. Its objective is to determine a set of appropriate noise controls to eliminate or reduce noise levels so that workers’ daily noise exposure does not exceed a permissible level. From a given noise control budget, engineering controls will be firstly implemented, followed by administrative controls, and then the use of hearing protection devices. Six optimization models are developed and sequentially applied to select appropriate noise controls without exceeding the budget. Numerical examples are presented to demonstrate the application of the proposed design procedure.
Rocznik
Strony
355--367
Opis fizyczny
Bibliogr. 29 poz., tab.
Twórcy
  • Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand
  • Sirindhorn International Institute of Technology, Thammasat University, Pathumthani, Thailand
Bibliografia
  • 1.National Institute for Occupational Safety and Health. Criteria for a recommended standard—occupational noise exposure (Publication No. 98-126). Cincinnati, OH, USA: DHHS (NIOSH); 1998.
  • 2.Harris CM. Handbook of noise control. New York, NY, USA: McGraw-Hill; 1979.
  • 3.Beranek LL, Vér IL. Noise and vibration control engineering, principles and applications. New York, NY, USA: Wiley; 1992.
  • 4.Cheremisinoff PN. Industrial noise control. Englewood Cliffs, NJ, USA: Prentice Hall; 1993.
  • 5.Ridley J. Safety at work. Oxford, UK: Butterworth-Heinemann; 1994.
  • 6.Wilson CE. Noise control, measurement, analysis, and control of sound and vibration. Malabar, FL, USA: Krieger; 1994.
  • 7.Bies DA, Hansen CH. Engineering noise control, theory and practice. London, UK: Chapman & Hall; 1996.
  • 8.Richards EJ. On the prediction of impact noise, III: energy accountancy in industrial machines. J Sound Vib. 1981;76(2):187–232.
  • 9.Vajpayee S, Nigm MM, Sadek MM. Noise reduction in material-handling machines. Appl Acoust. 1981;14(6):471–6.
  • 10.Docherty R, Corlett EN. A laboratory and simulation comparison of the effectiveness of open entry rooms for protection from high noise levels. Appl Acoust. 1993;16(6):409–25.
  • 11.Cops A. Absorption properties of baffles for noise control in industrial halls. Appl Acoust. 1985;18(6):435–48.
  • 12.Li P, Halliwell NA. Industrial jet noise: coanda nozzles. J Sound Vib. 1985;99(4):475–91.
  • 13.Baek KH, Elliott SJ. Natural algorithms for choosing source locations in active control systems. J Sound Vib. 1995;186(2):245–67.
  • 14.Bahrami A, Williamson HM, Lai JCS. Control of shear cutting noise effect of blade profile. Appl Acoust. 1998;54(1):45–58.
  • 15.Lee YY, Ng CF. Sound insertion loss of stiffened enclosure using the finite element method and the classical approach. J Sound Vib. 1998;217(2):239–60.
  • 16.Sorainen E, Kokkola H. Optimal noise control in a carpentry plant. Appl Acoust. 2000;61:37–43.
  • 17.Bilawchuk S, Fyfe KR. Comparison and implementation of the numerical methods used for calculating transmission loss in silencer systems. Appl Acoust. 2003;64(9):903–16.
  • 18.Sutton P. Process plant noise: evaluation and control. Appl Acoust. 1976;9(1):17–33.
  • 19.Nanthavanij S, Yenradee P. Analytical determination of worker assignment with workplace noise consideration. In: Dessouky MI, editor. C&IE 1999: Proceedings of the 25th International Conference on Computers and Industrial Engineering. New Orleans, LA, USA. p. 411–4.
  • 20.Nanthavanij S, Kullpattaranirun T. A genetic algorithm approach to determine minimax work assignments. Int J Ind Eng-Theory. 2001;8;176–85.
  • 21.Yaoyuenyong K, Nanthavanij S. A modified LPT swap heuristic for solving large minimax work assignment problems. Ind Eng Manage Syst. 2003;2(2):121–30.
  • 22.Nanthavanij S, Yenradee P. Minimum number of workers and their daily work assignment to operate n noisy machines based on permissible noise exposure limit. In: Chern MS, Sheu DD, Wang MJ, editors. IJIE 2000: Proceeding of the 5th Annual Conference on Industrial Engineering—Theory, Applications and Practice; Hsinchu, Taiwan. Int J Ind Eng-Theory; 2000.
  • 23.Behar A, Kunov H. Insertion loss from using double protection. Appl Acoust. 1999;57(4):375–85.
  • 24.Crabtree RB, Behar A. Measurement of hearing protector insertion loss at ultrasonic frequencies. Appl Acoust. 2000;59(3):287–99.
  • 25.Birch RS, Gerges SN, Vergara EF. Design of a pulse generator and shock tube for measuring hearing protector attenuation of high amplitude impulsive noise. Appl Acoust. 2003;64(3):269–86.
  • 26.Buchweiller JP, Mayer A, Klein R, Iotti JM, Kusy A, Reinert D, Christ E. Safety of electronic circuits integrated into personal protective equipment (PPE). Safety Sci. 2003;41(5):395–408.
  • 27.Feeney RJ. Why is there resistance to wearing protective equipment at work? Possible strategies for overcoming this. J Occup Accid. 1986;8(3):207–13.
  • 28.Occupational Safety and Health Administration. Occupational noise exposure: hearing conservation amendment. Fed Reg. 1983;48:9738–83.
  • 29.Sanders MS, McCormick EJ. Human factors in engineering and design. New York, NY, USA: McGraw-Hill; 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-36445383-1e8f-4de6-958d-61126603276f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.