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ABSTRACT. The demand for smartphone positioning has grown rapidly due to increased 

positioning accuracy applications, such as land vehicle navigation systems used for vehicle 

tracking, emergency assistance, and intelligent transportation systems. The integration between 

navigation systems is necessary to maintain a reliable solution. High-end inertial sensors are 

not preferred due to their high cost. Smartphone microelectromechanical systems (MEMS) are 

attractive due to their small size and low cost; however, they suffer from long-term drift, which 

highlights the need for additional aiding solutions using road network that can perform 

efficiently for longer periods. In this research, the performance of the Xiaomi MI 8 

smartphone's single-frequency precise point positioning was tested in kinematic mode using the 

between-satellite single-difference (BSSD) technique. A Kalman filter algorithm was used to 

integrate BSSD and inertial navigation system (INS)-based smartphone MEMS. Map matching 

technique was proposed to assist navigation systems in global navigation satellite system 

(GNSS)-denied environments, based on the integration of BSSD–INS and road network models 

applying hidden Marcov model and Viterbi algorithm. The results showed that BSSD–INS–

map performed consistently better than BSSD solution and BSSD–INS integration, irrespective 

of whether simulated outages were added or not. The root mean square error (RMSE) values 

for 2D horizontal position accuracy when applying BSSD–INS–map integration improved by 

29% and 22%, compared to BSSD and BSSD–INS navigation solutions, respectively, with no 

simulated outages added. The overall average improvement of proposed BSSD–INS–map 

integration was 91%, 96%, and 98% in 2D horizontal positioning accuracy, compared to 

BSSD–INS algorithm for six GNSS simulated signal outages with duration of 10, 20, and 30 s, 

respectively. 
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1. INTRODUCTION 

The precise point positioning (PPP) technique has been widely used for the positioning of the 

global navigation satellite system (GNSS). The benefits of PPP are its low cost, where there is 

no need for the base receiver, no limitation of distance relative to the differential technique, and 

providing up to decimeter positioning accuracy in kinematic mode (Hamed et al., 2019). Google 

announced in May 2016 that raw GNSS measurements from the smartphone Android 7 became 

available (European, 2017). Many smartphone applications give developers access to code and 

carrier measurements, leading to the development of GNSS processing techniques using low-

cost sensors. These techniques were previously only available to expensive GNSS receivers 
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(GSA, 2020). In May 2018, Xiaomi launched the first dual-frequency smartphone, the Xiaomi 

MI 8. It has a GNSS chip with the availability of observing codes and carrier phase 

measurements of L1 frequency on global positioning system (GPS) of the United States and L1 

& L5 frequency on the global navigation satellite system of the Russian Federation 

(GLONASS), and Galileo E1 & E5a (El-Mezayen et al., 2019). 

Smartphone’s single frequency of GNSS measurements was tested in real-time kinematic 

(RTK) and static modes (Dabove et al., 2019). The PPP performance of the Xiaomi MI 8 

smartphone was evaluated in kinematic mode. The positioning accuracy was at the level of a 

few meters, and the positioning performance had an offset of more than 4 m from the real track 

when compared to the geodetic receiver (Wu et al.,2019). 

Increased positioning accuracy can support many mass consumer applications such as land 

vehicle navigation systems (LVNSs). LVNS is used for vehicle tracking, collision avoidance, 

emergency assistance, and several mobile applications that require increasing location 

accuracy. Most vehicles travel in urban areas with difficult navigational conditions (tunnels, 

forests, in between skyscrapers, etc.). GNSS systems are often combined with inertial sensors 

to maintain a reliable and continuous navigation solution (Karamat, 2014). High-end inertial 

sensors are not preferred due to their high cost. Smartphone microelectromechanical systems 

(MEMS) are attractive due to their small size, light weight, and low cost, but they suffer from 

severe drifts because of inherent biases (Angrisano, 2010). Map matching is a basic operation 

for improving positioning accuracy by integrating GNSS tracking data with spatial road 

network data (roadway centerlines). It is utilized to identify the correct road link on which a 

vehicle is traveling and determine the location of a vehicle on a network road (Attia, 2013). 

Map matching is useful for intelligent transportation systems and urban traffic modeling by 

optimizing the traffic flow and avoiding traffic jams (Trough et al., 2020). 

LVNS technology based on GNSS and inertial navigation system (INS) is a subject of interest 

due to its potential for consumers and commercial vehicle markets. The performance of LVNS 

has been improved over the years by a lot of approaches. The first approach is to improve the 

stochastic modeling of the MEMS inertial sensors and enhance the quality of the MEMS data. 

Niu et al. (2010) added constraint update information to the MEMS sensors to improve Kalman 

filter errors, especially during GNSS signal blockages. The second approach is to utilize the 

road network data as an additional constraint. Attia (2013) provided several geospatial data 

models for both indoor and outdoor environments. He introduced a map matching algorithm to 

match and project navigation positions on the geospatial map links to increase positioning 

accuracy. 

The third method is to use aid sensors and apply a reduced inertial sensor integration. Moussa 

et al. (2019) introduced an approach for land vehicle navigation in GNSS-denied environments 

by aiding INS with a low-cost ultrasonic sensor. They used the Kalman filter to bound the INS 

drift during GNSS blockage based on heading change update for enhancing the reduced 

integration estimation. The fourth approach is to introduce priori navigation system information 

(vehicle dynamic models and kinematic restrictions), which can reduce estimation uncertainty. 

Zhang et al. (2021) developed a velocity model composed ofspeed sensors and motion 

constraints used as direct auxiliary information to the GNSS/INS integrated system. This model 

was developed to improve the land vehicle navigation accuracy in a blocked GNSS signal 

environment. 

The main purpose of this research is to improve the smartphone’s positioning accuracy for land 

vehicle navigation applications in environments where GPS accuracy has either deteriorated or 

its signal has been blocked. This can be accomplished by (1) developing an undifferenced and 

between-satellite single-difference (BSSD) PPP technique using single-frequency GNSS 



140 

 

observations; (2) evaluating the model results in kinematic mode using a Xiaomi MI 8 

smartphone and a high-end geodetic receiver; (3) providing an integrated positioning model 

based on combining the BSSD PPP results with the smartphone inertial sensors output; (4) 

developing a rectified road network mapping for the area of interest through a new map 

matching model based on hidden Marcov model (HMM) and Viterbi algorithms (Luo et al., 

2017); (5) combining the positioning of the integrated system with a map matching model to 

obtain a restricted land vehicle navigation solution; and (6) assessment of the restricted 

integrated system in comparison with the reference RTK relative positioning solution. 

2. MATHEMATICAL MODEL 

2.1. BSSD PPP Technique for GPS and GLONASS 

The standard single-frequency GNSS PPP technique of code and carrier phases, considering 

GPS time as a reference time system, can be expressed by the following (Abd Rabbou and El-

Rabbany, 2015b) equations: 
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To completely remove the receiver-related biases from both the pseudorange (P) and phase (∅) 

observations and intersystem biases, a satellite from each system is selected as reference. GPS 

(m) and GLONASS (n) satellites are taken as reference satellites to form the BSSD single-

frequency PPP technique (Abd Rabbou and El-Rabbany, 2015b): 
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For equations (5–8), the term ∆ for GPS system (G) is the observation difference between any 

satellite and the reference satellite m, and for GLONASS system (L) is the observation 

difference of any satellite referenced to the satellite n, where: 

dtr  –  clock error for the receiver 

𝑑𝑡𝐺
𝑠 ,  𝑑𝑡𝐿

𝑠
 
 –  clock errors for GPS and GLONASS satellites systems, respectively; 

𝜌 
 
𝐺

,  𝜌 
 
𝐿
 –  the true geometric range from receiver to satellite for GPS and GLONASS 

systems, respectively; 

dr,  ds
   –  frequency-dependent code hardware delay for receiver and satellite, 

respectively; 
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δr ,  δs  –  frequency-dependent phase hardware delay for receiver and satellite, 

respectively; 

e𝐺 ,  e𝐿  –  code relevant system noise for GPS, GLONASS systems, respectively; 

ε𝐺 ,  ε𝐿  –  phase relevant system noise for GPS, GLONASS systems, respectively; 

TG 
,  TL  –  ionosphere errors for GPS and GLONASS systems, respectively; 

IG 
,  IL  –  troposphere errors for GPS and GLONASS systems, respectively; 

ISBL   –  the intersystem bias for GLONASS satellites;  

N  –  undifferenced ambiguity parameter. 

2.2. BSSD with INS integration Using Kalman Filter 

2.2.1. INS mechanization 

In the process of converting the output of an inertial measurement unit (IMU) into position, 

velocity, and attitude, the outputs include (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) measured by gyroscopes and (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) 

measured by accelerometers with respect to the body frame. The mechanization is executed in 

navigation frame (n-frame) using equations (9–12) (Noureldin et al., 2013): 
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where: 

𝑟𝑛 = [𝜑 𝜆 ℎ]𝑇  –  the position vector in the 𝑛-frame, in latitude, longitude, and 

elevation; 

𝑣𝑛 = [𝑉𝐸 𝑉𝑁 𝑉𝑈]𝑇 –   the velocity vector in the 𝑛-frame, east, north, and up 

components; 

M  –  the meridian radius of the ellipsoid and N the normal radius of the ellipsoid; 

�̇�𝑛  –  the kinematic acceleration vector in the 𝑛-frame; 

2𝛺𝑖𝑒
𝑛   –  the Coriolis acceleration vector and 𝑔𝑛 is the gravity vector; 

𝛺𝑖𝑒
𝑛   –  the skew-symmetric matrix of rotation rate vector of the earth (expressed in 

n-frame); 

𝛺𝑒𝑛
𝑛   –  the skew-symmetric matrix of rotation rate vector of the n-frame with 

respect to e-frame; 

𝑓𝑏  –  the specific force vector in the 𝑏-frame, measured by accelerometers; 

𝛺𝑖𝑏
𝑏   –  the skew-symmetric matrix of the vector 𝜔𝑖𝑏

𝑏 , measured by gyroscopes; 

𝛺𝑖𝑛
𝑏   –  the skew-symmetric matrix of the angular velocity vector 𝜔𝑖𝑛

𝑏 of the 𝑛-frame 

w.r.t 𝑖-frame.  

2.2.2. Kalman filter algorithm 

Recursive algorithm usually used in navigational application utilizes a set of equations to 

acquire an optimum estimate of the state vector which has the least variance and the Kalman 

Filter equations come under two steps: (1) prediction and (2) correction. The first step 

(equations 13 and 14) includes the prediction equations to predict the state vector and the 
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associated covariance matrix of the system, depending on the current state (Abd Rabbou and 

El-Rabbany, 2015a): 

 �̂�𝑘
− = Φ𝑘.𝑘−1�̂�𝑘−1

+   (13) 
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where: 

the superscript “^” indicates the estimated quantity; 

the superscript “-” represents a predicted quantity; 

the superscript “+” represents the corrected quantity.  

The second step (equations 15 and 16) is to update the state vector and the associated covariance 

matrix with the available measurements regarding measurement model:  
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𝐾𝐺 refers to the Kalman gain at time 𝑡𝑘. Concerning the correction step, it depends on the 

Kalman gain, which is computed to produce a minimum error variance and is defined as in 

following equation: 

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

T(𝐻𝑘𝑃𝑘
−𝐻𝑘

T + 𝑅𝑘)−1 (17) 

where: 

𝑥𝑘  –  the state vector of the process at time 𝑡𝑘; 

𝑃𝑘
   –  the covariance matrix associated with state vector at epoch; 

Φ𝑘−1.𝑘 –  the state transition matrix from epoch 𝑡𝑘−1 to 𝑡𝑘; 

𝑄𝑘   –  the system process noise covariance matrix; 

𝑧𝑘   –  the measurement (observation) vector, at time 𝑡𝑘; 

𝐻𝑘   –  the observation matrix of the system at epoch 𝑡𝑘 ; 

𝑅𝑘   –  the measurement noise covariance matrix.  

2.2.3. Loosely coupled integration of BSSD with INS  

The BSSD PPP output was loosely integrated with the INS using the Kalman filter, as shown 

in Figure 1. First, the raw IMU measurements obtained through mechanization equations using 

the quaternion method estimation were processed. Second, the resulting position and velocity 

were differenced from GPS measurement to enter the Kalman filter to get the error estimate of 

position and velocity. Finally, the resulting error estimate was used to update INS estimation to 

get the full state vector (position, velocity, and attitude). 
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Figure 1. Block diagram of loosely coupled GNSS–INS integration process 

2.3. Map Matching Technique 

Map matching is a basic operation for improving the positioning accuracy by integrating GNSS 

tracking data with spatial road network data (roadway centerlines). It is used to identify the 

correct road link on which a vehicle is traveling and determine the location of a vehicle on the 

road network as shown in Figure 2 (Trough et al., 2020). Map matching algorithms can be either 

global or incremental. Global algorithms have batch processing for the entire input trajectory 

before generating the solution. Incremental algorithms employ localizing strategies that divide 

the input trajectory into smaller segments and process them sequentially without the knowledge 

of future inputs (Goh et al., 2012). 

There are different types of map matching algorithms such as geometric, topological, and 

probabilistic. The probabilistic map matching requires applying the HMM algorithm, which is 

a recursive algorithm. It is used to find the unknown or hidden positions (candidates) on the 

road network with the help of the known measured positions (observations) of the trajectory. 

  

Figure 2. Map matching process illustration (left) and focusing at specific position (right) 

The mathematical model performs the following tasks sequentially to perform map matching: 

2.3.1. Selection of the candidate points of the trajectory 

A candidate point is a possible position of an observation on the network within a search 

distance. The road network is downloaded using open street maps (Export, 2020) and divided 

into equal line segments according to the data sampling rate and the speed of the vehicle. The 

beginning and endpoints of all road segments constitute a grid of points on the network. The 

calculation of candidates affects the computation time. A higher search distance can result in 

more candidates per observation and more time.  
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Figure 3. Selection of the candidate points of the trajectory  

Initially, for each epoch, the maximum search distance along the road link is calculated using 

the measured previous epoch velocity as in equation (18). 

 D𝑖 max = 𝑉𝑖−1 ∗ time (18) 

This is followed by the selection of the candidate points under the condition that the distance 

from the matched point of the previous epoch to the candidate point does not exceed the 

maximum search distance, as shown in Figure 3. Finally, the observation probabilities based on 

the distance from the GNSS–INS points to candidates and the transition probabilities based on 

the comparison between GNSS–INS and candidate distances are calculated. The maximum 

probabilities are selected using the Viterbi algorithm as described later. 

2.3.2. Calculation of the observation and transition probabilities  

Each GNSS–INS point is assigned an observation probability value with candidates, as shown 

in Figure 3, which refers to how likely this candidate represents an observation on the road 

network. For the calculation of the observation probability, it is assumed that a position on the 

road network with certain distribution positions can be determined by GNSS. To simplify 

matters, it is postulated that the measurements from GNSS–INS point to the candidates are 

normally distributed (blue arrows in Figure 3). The observation probability is calculated with 

the following formula (Jung, 2019): 

  Pobs =
1

√2𝜋 𝜎𝑧
∗ 𝑒

−0.5 (
|𝑝𝑖-𝑐𝑖.𝑗|

𝜎𝑧
)

2

  (19) 

 𝜎𝑧 =  1.4826 ∗ median(|𝑝𝑖-𝑐𝑖.𝑗|) (20) 

where: 

𝑝𝑖-𝑐𝑖.𝑗 –  distance between the observation points and the candidate; 

σz  –  standard deviation. 

Transition probability gives the probability of a vehicle moving between the road candidates. 

Some transitions will be very unlikely and require complicated maneuvers. Practically, 

transitions whose driving distance is about the same as the distance between the measurements 

were preferred. As shown in Figure 4, the PGNSS−INS 𝑖−1
 point was matched to the road network. 

For matching PGNSS−INS 𝑖
, the model forms transitions between the previous matched point and 

all selected candidates of the observation (C1, C2, and C3). A probability value is calculated 

for each transition. This probability is calculated using two terms. The first is based on the 

distance between GNSS–INS observations and the distance of the previous matched point to 
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each of the selected candidates. The second is based on the orientation angles of these two 

distances, as shown in the following formula (Jung, 2019): 

 Ptran = (
1

β
∗ e

−d

β ) ∗ (
180°−(|AD°−ADc°|)

180° )  (21) 

 β =
1

ln(2)
∗ median(|D − Dc|) (22) 

where: 

d = (|D − Dc|); 

β  –  a weighting factor; 

D  –  the distance between GNSS–INS points of successive epochs; 

Dc –  the distance between the previous matched point and each of selected 

candidates; 

A𝐷  –  the orientation angle of GNSS–INS points’ distance; 

ADc
 –  the orientation angle of the Dc candidate distance. 

 

Figure 4. Transition probability representation 

2.3.3. Application of the Viterbi algorithm and determination of the candidates that best 

represent the given trajectory  

The HMM is applied in real-time mode as soon as the candidates have been determined and all 

probabilities have been calculated for each epoch. By applying the Viterbi algorithm to the 

HMM, the sequence of candidates is determined for which total probability is maximized. The 

next equations is to explain some of Viterbi algorithm basics.  

For state space of the candidates of road links, n the number of observations and the time in 

seconds ranges from 1 to n. The objective is to find the candidates’ sequence (𝑐1,, 𝑐𝑛), that 

has the maximum probability given the observations. Using the probability theory (Luo et al., 

2017), we can conclude the following: 

P(Actual sequence of road candidates)  
= Max P{(c1 …  ct …  cn.  o1 …  ot …  on)}         

                                                           for 1 ≤  t ≤      (23) 
𝑃(𝑐1 …  𝑐𝑡 …  𝑐𝑛.  𝑜1 …  𝑜𝑡 …  𝑜𝑛) =   𝑃𝑜(𝑐1 … 𝑐𝑡 …  𝑐𝑛−1 ,  𝑜1 …  𝑜𝑡 …  𝑜𝑛−1) ∗ 

𝑃((𝑐𝑛|𝑐1 …  𝑐𝑡 …  𝑐𝑛−1 ,  𝑜1 …  𝑜𝑡 …  𝑜𝑛−1)) ∗ 𝑃((𝑜𝑛|𝑐1 …  𝑐𝑡  …  𝑐𝑛−1 ,  𝑜1 … 𝑜𝑡 …  𝑜𝑛−1)) (24) 
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In the HMM, the candidates at time t depend only on the state of the system as time 𝑡 − 1 and 

the observation at time 𝑡 depends only on the state of the system as time t. By substituting 

equations (25 and 26) in equation (24), the computable formula can be obtained as in equation 

(27). 

𝑃(𝑐𝑡|𝑐1 … 𝑐𝑡−1) =  𝑃(𝑐𝑡|𝑐𝑡−1)    (25) 

𝑃(𝑜𝑡|𝑐1 … 𝑐𝑡−1. 𝑐𝑡.  𝑜1 … 𝑜𝑡−1) =  𝑃(𝑜𝑡|𝑐𝑡)     (26) 

Max 𝑃{(𝑐1 … 𝑐𝑡 …  𝑐𝑛|  𝑜1 … 𝑜𝑡 … 𝑜𝑛)}  =  𝑃0 ∗ Max{𝑃(𝑐𝑡|𝑐𝑡−1) ∗ 𝑃(𝑜𝑡|𝑐𝑡)}  (27) 

where: 

𝑃0  –  the initial probability given to first candidates along the path; 

𝑃(𝑐𝑡|𝑐𝑡−1) –  refers to transition probability of the candidates(Ptran); 

𝑃(o𝑡|𝑐𝑡) –  refers to observation probability (Pobs). 

For each epoch, different paths from the previous matched point to all selected candidates are 

used to calculate the transition probabilities, as described in Figure 5. By merging the obtained 

candidates, the final matching path on the network is obtained and represents the most probable 

trajectory that, in this case, passes with candidates 𝑐1−1, 𝑐2−3, 𝑐3−2, and 𝑐4−2. 

 

Figure 5. Determination of the final matching trajectory 

3. DATA COLLECTION  

A real-life kinematic trajectory was provided to collect GNSS raw observations and inertial 

sensor data, where the two geodetic receivers of the Leica GS15 with the capability of tracking 

GNSS satellites were used to perform an RTK solution. The base receiver was at the point with 

known coordinates and the smartphone was held on a vehicle as shown in Figure 6. The 

kinematic trajectory’s length was about 9.20 km, and it was performed in Madinaty city, Cairo. 

The layout plan of the trajectory is shown in Figure 7. GNSS data were observed for about 28 

min. The reference positioning solution for the smartphone was the RTK relative positioning 

of the geodetic receivers.  

Inertial sensor data and GNSS observation epochs were collected every second with 1674 used 

epochs. The RTK solution was also performed with 1 s interval, 100% fixed solutions were 

obtained, and the trajectory was observed as a loop and not a straight line. Epoch 

synchronization of different solutions was important for correlating and comparing the results 

to the reference RTK, where unsynchronized epochs were removed. At the beginning, the 
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trajectory was in an open sky low-rise area (average height = 9 m); after 4 km, the trajectory 

led through high-rise areas (average height = 18 m) and the streets were so wide (up to eight 

lanes and traffic islands).  

There are many Android applications capable of logging raw GNSS and sensor measurements. 

During the experiment, Geo++ RINEX Logger was used, which was released in 2017 by the 

Geo++ company, because it provides observation measurements for GPS, Galileo, and 

GLONASS systems, records the raw data in RINEX 3.03 format, allows processing by different 

software, and is available online for free. Also, “Androsensor” application was used to collect 

smartphone MEMS data to be utilized in INS mechanization. 

Figure 6. Geodetic base (left) and geodetic rover and smartphone (right) 

 

Figure 7. Trajectory layout plan marked with the simulated locations of outages 

350 m 
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4. METHODOLOGY 

In the kinematic trajectory, the coordinate system used was the Universal Transverse Mercator 

(UTM) for both the smartphone and the geodetic rover receiver. The RINEX files were 

processed using the BSSD PPP technique, which made use of GPS/GLONASS satellite systems 

as well as orbital and clock corrections from the International GNSS Service (IGS) stations. 

INS data was mechanized by the quaternion method and the results were loosely integrated with 

BSSD outcome using the Kalman filter. Trajectory road network was downloaded from the 

open street map. The trajectory roads were buffered by their width. the points outside the buffer 

were matched and returned to the network centerlines by a probabilistic map matching 

technique, which utilized the HMM and Viterbi algorithm, as described before, at each epoch. 

As shown in Figure 8, three navigational solutions were obtained: BSSD PPP results (BSSD 

solution), the result of GNSS and INS integration (BSSD–INS solution), and the result of 

BSSD–INS–map matching (BSSD–INS–MM solution). For using the map matching results as 

a constraint in the navigation solution and simulating the signal loss problems, six outages along 

the trajectory were added. As shown in Figure 6, the outages lasted 10, 20, and 30 s for outages 

1–2, 3–4, and 5–6, respectively. The accuracy of the resulting navigation solution was 

represented for the trajectory with and without added simulated outages. 

 

Figure 8. Block diagram of GPS–INS–map matching navigation solution 

5. ANALYSIS AND RESULTS 

The results of the navigation solutions were correlated and plotted with reference to the relative 

RTK positioning using the UTM coordinate system. Figures 9 and 10 represent easting and 

northing direction solutions of BSSD, BSSD–INS integration, and BSSD–INS–map matching 

integration tracks, respectively. The two charts are clarified with focused charts at 1 min along 

the track. The root mean square error (RMSE) and the maximum error for the three navigation 

solutions are shown in Figure 11. The RMSE improved by about 9% in easting, northing, and 

2D horizontal when applying BSSD–INS compared to the BSSD navigation solution. The 

RMSE improved by about 30%, 28%, and 29% in easting, northing, and 2D horizontal, 

respectively, when applying BSSD–INS–MM compared to BSSD, and it also improved by 

about 22%, 21%, and 22% in easting, northing, and 2D horizontal, respectively, when applying 

BSSD–INS–MM compared to BSSD–INS. Figure 12 shows the navigation positioning 

solutions with the relative positioning RTK track for a part of the layout trajectory (the left) and 

at outage No. 1 layout (the right).
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Figure 9. Easting direction solutions without simulated outages (lower figure) and easting solution focused at 1 min (upper figure) 
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Figure 10. Northing direction solutions without simulated outages (lower figure) and northing solution focused at 1 min (upper figure)  
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Figure 11. Analysis of RMSE and maximum error for BSSD, BSSD–INS and BSSD–INS–MM tracks 

         

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Part of the resulting layouts of tracks solution with the reference track (left) 

and layouts of tracks solution at GNSS signal outage No. 1 (right) 

 

 

Black color: reference RTK track 

Red color: BSSD GNSS track 

Blue color: BSSD–INS integration track 

Green color: BSSD–INS–MM track 30 m 22 m 
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Figure 13 Positioning error histograms for BSSD, BSSD–INS, and BSSD–INS–MM solutions  

in easting and northing directions 

Figure 13 shows how the positioning errors for each method have changed; the histogram charts 

of the positioning errors for BSSD, BSSD–INS, and BSSD–INS–MM solutions in easting and 

northing directions are shown in the figure. We can notice that bins of the x-axis (positioning 

error limits) are the same for easting and northing in each navigation solution to easily consider 

the improvement of the navigation solutions. Chart No. 1, 2, and 3 explain how the easting 

positioning error has been slightly reduced when applying the inertial navigation integration 

and significantly reduced when applying map matching. Chart No. 4, 5, and 6 explain how the 

northing positioning errors have been improved for BSSD–INS and BSSD–INS–MM solutions. 

The outlier observations are the observations whose positioning error is greater than 3 m or less 

than −5 m. The total number of observations is 1674 epochs, as said before. The number of 

outlier observations in easting and northing are 456, 415, and 0 for BSSD, BSSD–INS, BSSD–

INS–MM, respectively. These outliers represent 27%, 25%, and 0%, respectively, of the total 

observations. These percentages clearly explain the improvement of accuracy achieved on 

applying the map matching solutions. 

Figures 14 and 15 represent easting and northing direction solutions for BSSD–INS integration 

and BSSD–INS–map matching tracks with respect to RTK with inserted simulated GNSS 

signal blockage (outages), respectively. The GNSS blockage effect was clear in the resulting 

integration, wherein the positioning error of BSSD–INS solution increased with increasing 
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signal blockage time due to INS drift caused by INS sensors’ inherent biases, where it exceeded 

100 m during some outages. The maximum error for the two navigation solutions (BSSD–INS 

and BSSD–INS–MM) for the six added outages is shown in Table 1 and Figure 16. The 

improvement percentage is increased when using the map matching to the BSSD–INS solution. 

The improvement of BSSD–INS–map matching ranges from 90% to 98% in 2D horizontal 

position accuracy, compared to BSSD–INS for the six GNSS signal simulated outages. For 

showing the map matching improvement effect on the navigation solution, for example, Figure 

17 shows the easting and northing positioning errors focused at simulated outage No. 1. 

 

Figure 14. Easting direction solutions of the BSSD–INS integration and BSSD–INS–MM tracks  

with simulated outages  

 

Figure 15. Northing direction solutions of the BSSD–INS integration and BSSD–INS–MM tracks 

with simulated outages   

Out No.1 

10 S 

Out No.2 

10 S 
Out No.3 

20 S 

Out No.4 

20 S 

 Out No.5 

30 S 

Out No.6 

30 S 

 

Out No.1 

10 S 

Out No.2 

10 S 

Out No.3 

20 S 

Out No.4 

20 S 

Out No.5 

30 S 

Out No.6 

30 S 



154 

 

Table 1. Maximum error for BSSD–INS and BSSD–INS–MM tracks at the inserted outages 

Solution 
Maximum error (m)_ UTM datum Improvement  

% BSSD–INS BSSD–INS–MM 

Outages Easting Northing 2D Hz Easting Northing 2D Hz 2D Hz 

1 33.47 30.45 45.25 2.98 2.50 3.74 92 

2 32.70 31.80 45.61 3.00 3.46 4.58 90 

3 81.96 73.42 110.04 2.57 2.49 3.11 97 

4 64.76 56.70 86.08 3.22 3.13 3.97 95 

5 95.52 117.28 151.25 2.20 2.55 3.29 98 

6 117.23 97.25 152.31 3.37 3.50 4.86 97 

 

Figure 16. Analysis of maximum error for BSSD–INS and BSSD–INS–MM tracks at the inserted 

outages 
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 Figure 17. Easting and northing position errors for BSSD–INS and BSSD–INS–MM tracks 

solutions during simulated outage No. 1 

 6. CONCLUSION 

Nowadays, raw GNSS measurements and inertial sensor data are collected by many 

smartphones, which has paved the way to developing precise positioning techniques using low-

cost sensors. Many consumer applications require increased location accuracy, such as LVNSs 

used for traffic monitoring and various mobile navigation applications. In this research, the 

performance of smartphone navigation systems in environments where GNSS signals are either 

deteriorated or blocked was improved. The BSSD PPP technique was used to assess the 

performance of smartphone raw GNSS data in kinematic mode. The Kalman filter estimation 

was used to integrate GNSS data with low-cost IMU-based smartphone MEMS. A probabilistic 

map matching technique based on the HMM and Viterbi algorithm was utilized to improve the 

BSSD–INS integration solution, where the road network data was considered for imposing 

constraints on the navigation system. A kinematic trajectory was performed in Madinaty city 

in Cairo, Egypt, to collect GNSS and inertial sensor data using the Xiaomi MI 8 smartphone 

and multifrequency geodetic receivers and to get a relative positioning RTK reference solution. 

The results showed that the proposed BSSD–INS–map matching integration enhanced the 

navigation solution, irrespective of whether simulated outages were added or not. The RMSE 

for easting and northing positioning accuracy when applying BSSD–INS-based smartphone 

MEMS integration improved by 9%, compared to applying BSSD. The RMSE for easting and 

northing position accuracy when applying BSSD–INS–map matching integration improved by 

30% and 28%, respectively, compared to the BSSD solution, in case of no outages inserted. 

The mean values for improving the proposed BSSD–INS–map matching integration were 91%, 

96%, and 98% in 2D horizontal position accuracy compared to the BSSD–INS algorithm for 

six GNSS added signal outages with 10, 20, and 30 s periods, respectively. 
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