PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuzzy Logic Based Adaptive Resonance Theory-1 Approach for Offline Signature Verification

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the use fuzzy logic with adaptive resonance theory-1 in signature verification. Fuzzy model is capable of stable learning of recognition categories in response to arbitrary sequences of binary input pattern. The work was carried out on two famous available signature corpuses i.e. MCYT (Online Spanish signatures database) and GPDS (Grupo de Procesado Digital de la se?al). Local binary patterns (LBP) and Gray Level Co-occurrence Matrices (GLCM) features were calculated for robust offline signature verification system. Training and verification was done using fuzzy adaptive resonance theory-1(FART-1). The system is trained and verified for different datasets to increase the accuracy of the classifier. The results thus obtained are robust than other existing techniques. The FAR and FRR for the system is 0.74% and 0.83% respectively.
Twórcy
autor
  • Department of Computer Science, Amity University Haryana
autor
  • Department of Electronics and Communication, Amity University Haryana
autor
  • Amity Training & Placement Centre, Amity University Uttar Pradesh
Bibliografia
  • [1] Thomas A. A. Wilscy M. (2010). Face Recognition Using Simplified Fuzzy ARTMAP. J. Signal and Image Processing 1(2) 134-136.
  • [2] Bansal A. Garg D. Gupta A. (2008 July). A pattern matching classifier for offline signature verification. In Emerging Trends in Engineering and Technology 2008. ICETET’08. First International Conference on (pp. 1160-1163). IEEE.
  • [3] Le H. H. Do N. T. (2015). Offline handwritten signature verification using local and global features. Annals of Mathematics and Artificial Intelligence 75(1-2) 231-247.
  • [4] Karki M. V. Indira K. Selvi S. S. (2007 December). Off-line signature recognition and verification using neural network. In Conference on Computational Intelligence and Multimedia Applications 2007. International Conference on (Vol. 1 pp. 307-312). IEEE.
  • [5] Chugh A. Jain C. Singh P. Rana P. (2015). Learning approach for offline signature verification using vector quantization technique. In Emerging ICT for Bridging the Future-Proceedings of the 49th Annual Convention of the Computer Society of India (CSI) Volume 1 (pp. 337-344). Springer Cham.
  • [6] Jain C. Singh P. (2014). An Offline Signature Verification System: An Approach Based on Intensity Profile. International Journal of Emerging Tech nologies in Computational and Applied Sciences 3(8) 143-146.
  • [7] Jain C. Singh P. Chugh A. (2014). An Offline Signature Verification using Adaptive Resonance Theory 1 (ART1). International Journal of Computer Applications 94(2).
  • [8] Uppalapati D. (2007). Integration of Offline and Online Signature Verification systems. Department of Computer Science and Engineering IIT Kanpur.
  • [9] ping Tian D. (2013). A review on image feature extraction and representation techniques. International Journal of Multimedia and Ubiquitous Engineering 8(4) 385-396.
  • [10] Tanaka T. Weitzenfeld A. (2002). Adaptive Resonance Theory. Neural Simulation Language.
  • [11] Hanmandlu M. Mohan K. M. Chakraborty S. Garg G. (2001). Fuzzy modeling based signature verification system. In Document Analysis and Recognition 2001. Proceedings. Sixth International Conference on (pp. 110-114). IEEE.
  • [12] Vargas J. F. Ferrer M. A. Travieso C. M. Alonso J. B. (2011). Off-line signature verification based on grey level information using texture features. Pattern Recognition 44(2) 375-385.
  • [13] Vargas J. F. Ferrer M. E. (2011). Texture analysis for off-line signature verification. In Biometric Systems Design and Applications. InTech.
  • [14] Hanmandlu M. Yusof M. H. M. Madasu V. K. (2005). Off-line signature verification and forgery detection using fuzzy modeling. Pattern Recognition 38(3) 341-356.
  • [15] Rajasekaran S. Pai G. V. (2000). Image recognition using simplified fuzzy ARTMAP augmented with a moment based feature extractor. International Journal of Pattern Recognition and Artificial Intelligence 14(08) 1081-1095.
  • [16] Carpenter G.A. Grossberg S. (2002). A selforganizing neural network for supervised learning recognition and prediction. Cognitive modeling 289-314.
  • [17] Ojala T. Pietikäinen M. Harwood D. (1996). A comparative study of texture measures with classification based on featured distributions. Pattern recognition 29(1) 51-59.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-363223d8-71ba-4f6d-8f05-5637e6a61b36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.