Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Łagodzenie rezonansu podsynchronicznego i poprawa zdolności przejazdu przy niskim napięciu w farmach wiatrowych opartych na maszynach indukcyjnych z kompensacją szeregową, podwójnie zasilanych, poprzez zastosowanie półprzewodnikowego FCL typu mostkowego
Języki publikacji
Abstrakty
Series-Capacitor compensation approach is widely used in transmission lines to expand the active power capacity of transmission lines. They provides a practical solution for Connection large-scale wind farms (WFs) to grid in order to transmit the wind power to grids in long distance load centres. Integration large-scale WFs to power system may lead to sub synchronous resonance (SSR) phenomenon and low-voltage ride through (LVRT) challenges in WFs connected through series capacitive compensated transmission lines. This paper suggest the employment of bridge-type solid-state fault current limiter (BSFCL) for damping the SSR and enhancing the LVRT performance of series capacitive compensated WFs integrated to power system. The WF modelled in this study is an aggregated doubly fed induction machine (DFIM). The first standard benchmark IEEE system is modified and is simulated in PSCAD/EMTDC software to show the BSFCL capability for damping the SSR and improving the LVRT requirements of WFs in this paper. Considering simulation results, it is found that the BSFCL effectively mitigates the SSR oscillations and fulfils the LVRT requirement of series capacitive compensated WF integrated to power system.
Metoda kompensacji szeregowo-kondensatorowej jest szeroko stosowana w liniach przesyłowych w celu zwiększenia mocy czynnej linii przesyłowych. Zapewniają praktyczne rozwiązanie umożliwiające podłączenie dużych farm wiatrowych (FW) do sieci w celu przesyłania energii wiatrowej do sieci w dalekobieżnych ośrodkach obciążenia. Integracja wielkoskalowych FW z systemem elektroenergetycznym może prowadzić do zjawiska rezonansu podsynchronicznego (SSR) i wyzwań związanych z przechodzeniem niskiego napięcia (LVRT) w FW połączonych szeregowymi, kompensowanymi pojemnościowo liniami przesyłowymi. W artykule tym zasugerowano zastosowanie półprzewodnikowego ogranicznika prądu zwarciowego typu mostkowego (BSFCL) do tłumienia SSR i zwiększania wydajności LVRT szeregowych WF z kompensacją pojemnościową zintegrowanych z systemem zasilania. WF modelowany w tym badaniu to zagregowana maszyna indukcyjna z podwójnym zasilaniem (DFIM). W tym artykule pierwszy standardowy system wzorcowy IEEE został zmodyfikowany i symulowany w oprogramowaniu PSCAD/EMTDC w celu pokazania zdolności BSFCL do tłumienia SSR i poprawy wymagań LVRT dla WF. Biorąc pod uwagę wyniki symulacji, stwierdzono, że BSFCL skutecznie łagodzi oscylacje SSR i spełnia wymagania LVRT dla szeregowego FW z kompensacją pojemnościową zintegrowanego z systemem zasilania.
Wydawca
Czasopismo
Rocznik
Tom
Strony
248--253
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
autor
- Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
autor
- Department of Electrical Engineering, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
Bibliografia
- [1] Xiaorong Xie,Xu Zhang,Huakun Liu,Hui Liu,Yunhong Li,Chuanyu Zhang, “Characteristic Analysis of Subsynchronous Resonance in Practical Wind Farms Connected to Series-Compensated Transmissions,” IEEE Transactions on Energy Conversion, 32, No. 3, 1117-1126, 2017.
- [2] A. Moharana; R. K. Varma, “Subsynchronous resonance in single-cage self-excited-induction-generator-based wind farm connected to series-compensated lines,” IET Generation, Transmission & Distribution, 5, No. 12, 2011.
- [3] M. Tsili and S. Papathanassiou, “A Review of Grid Code Technical Requirements for Wind Farms,” IET Renewable Power Generation, 3, No. 3, 308–332, Sept. 2009.
- [4] Khaled Mohammad Alawasa; Yasser Abdel-Rady I. Mohamed , “A Simple Approach to Damp SSR in Series-Compensated Systems via Reshaping the Output Admittance of a Nearby VSC-Based System,” IEEE Transactions on Industrial Electronics, . 62, No. 5, 2673-2682, 2015.
- [5] R. Varma, S. Auddy, Semsedini , “Mitigation of subsynchronous resonance in a series-compensated wind farm using static var compensator Power Eng Soc Gen Meet 2006,IEEE, 27, 1-7
- [6] V. Boopathi, R. Muzamil Ahamed, R.P.Kumudini, "Analysis and mitigation of subsynchronous oscillations in a radially-connected wind farm 2014 Power Energy System Conference Towar Sustain Energy, PESTSE. 2014, .1–7
- [7] Hossein Ali Mohammadpour; Md. Moinul Islam; Enrico Santi; Yong-June Shin, “SSR Damping in Fixed-Speed Wind Farms Using Series FACTS Controllers,” IEEE Transactions on Power Delivery, Vol. 31, No. 1, pp. 76-86, 2016.
- [8] Hossein Ali Mohammadpour; Enrico Santi, “Optimal adaptive subsynchronous resonance damping controller for a series-compensated doubly-fed induction generator-based wind farm,” IET Renewable Power Generation, 9, No. 6, 669-681, 2015.
- [9] M. Abdeen et al, "Adaptive Fuzzy Supplementary Controller for SSR Damping in a Series-Compensated DFIG-Based Wind Farm" IEEE Access, 5, No. 4, 1467-1476, Jan 2023.
- [10] Sajjad Golshannavaz; Farrokh Aminifar; Daryoush Nazarpour, “Application of UPFC to Enhancing Oscillatory Response of Series-Compensated Wind Farm Integrations”IEEE Transactions on Smart Grid, Vol. 11, pp. 1961-1968, 2014.
- [11] Li Wang and et al, "Damping of Subsynchronous Resonance in a Hybrid System With a Steam-Turbine Generator and an Offshore Wind Farm Using a Unified Power-Flow Controller" IEEE Transactions on power System, Vol. 57, No. 1, pp. 110-120, Feb. 2021
- [12] M. Ghorbani, M. Firouzi, B. Mozafari, and F. Golshan, , "Power flow management and LVRT enhancement by using multi-functional capacitive bridge-type fault current limiterisystem" International Journal of Electrical Power & Energy Systems, 148, p.108810. 2023
- [13] Xiang Zheng; Zheng Xu; Jing Zhang, “A supplementary damping controller of TCSC for mitigating SSR”, 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, October 2009
- [14] R. Varma, S. Auddy, Semsedini , “Mitigation of subsynchronous resonance in a series-compensated wind farm using FACTS controllers,” IEEE Transactions on Power Delivery, 23, No. 3, 1645-1654, 2008.
- [15] Akshaya Moharana; Rajiv K. Varma; Ravi Seethapathy, “SSR Alleviation by STATCOM in Induction-Generator-Based Wind Farm Connected to Series Compensated Line,” IEEE Transactions on Sustainable Energy, 5, No. 3, 947-957, 2014.
- [16]S. Golshannavaz; M. Mokhtari; D. Nazarpour, “SSR suppression via STATCOM in series compensated wind farm integrations”2011 19th Iranian Conference on Electrical Engineering, 1-6, 2011
- [17] Ahmed. M. M. Rashad; Salah Kamel, "Enhancement of Hybrid Wind Farm performance using tuned SSSC based on Multi-Objective Genetic Algorithm" 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), 786-791, 2016
- [18] G.D. Irwin, A .K . Jindal, A .L . Isaacs, “Sub-synchronous control interactions between Type3 wind turbines and series compensated AC transmission system “IEEE Power Energy Society General Meeting .2011,p. 1–6. Doi:10.1109/PES.2011.6039426.
- [19] K. J. Du, X. Y. Xiao, Y. Wang, Z. X. Zheng, Ch. S. Li, “Enhancing Fault Ride-Through Capability of DFIG-Based Wind Turbines Using Inductive SFCL With Coordinated Control,” IEEE Transactions on Applied Superconductivity. . 29, No. 2, March 2019
- [20] Hossain MA, Islam MR, Haque MY, Hasan J, Roy TK, Sadi MA. Protecting DFIG-based multi-machine power system under transient-state by nonlinear adaptive backstepping controller-based capacitive BFCL. IET Generation, Transmission & Distribution. 2022 Nov;16(22):4528-48.
- [21] S. Tohidi S, B.M. Ivatloo, “A comprehensive review of low voltage ride through of doubly fed induction wind generators”, Renewable and Sustainable Energy Rev. s, 57, 412-419, 2016
- [22] M. A. Sadi MA, A. A Hussein A, M. A. Shoeb,” Transient performance improvement of power systems using fuzzy logic controlled capacitive-bridge type fault current limiter”, IEEE Transactions on Power Systems, 36, No. 1, 323-35, 2020.
- [23] M. R. Shafiee, et al , “A Dynamic Multi-Cell FCL to Improve the Fault Ride through Capability of DFIG-Based Wind Farms” Energies, 13, No. 22, Nov. 2020
- [24] H. Radmanesh, H. Fathi and G. B. Gharehpetian, “Series Transformer-Based Solid State Fault Current Limiter,” in IEEE Transactions on Smart Grid, 6, no. 4, pp. 1983-1991, July 2015.
- [25] Zolfaghari, M. Gilvanejad,G.B. Gharehpetian, “A survey on fault current limiters: development and technical aspects” International Journal of Electrical Power Energy System, 118, P. 105729, 2020
- [26] M Firouzi, “Low-voltage ride-through (LVRT) capability enhancement of DFIG-based wind farm by using bridge-type superconducting fault current limiter (BTSFCL)” journal of Power Technologies, 99, No. 4, 245-253, 2020
- [27] O. Alizadeh, A. Yazdani, B. Venkatesh, and B. N. Singh, “Design and transient operation assessment of resonant FCLs in bulk power systems,” IEEE Trans. Power Deliv., vol. 31, no. 4, 1580–1590, 2016. DOI: 10.1109/ TPWRD.2015.2476704
- [28] H. Radmanesh and S. H. Fathi, “Parallel resonance type fault current limiting circuit breaker,” in High Voltage, 5, no. 1, 76-82, 2 2020.
- [29] M. Khorasaninejad, et al , “Application of a resistive mutual-inductance fault current limiter in VSC-based HVDC system”, International Journal of Electrical Power & Energy, 134, P. 107388, Jan 2022
- [30] M. Firouzi, M. R. Shafiee, G. B. Gharehpetian, “Multi-Resistor Bridge-Type FCL for FRT Capability Improvement of DFIG-based Wind Farm” IET Energy System Integration. 2, No. 4, 316-324, Dec 2020
- [31] M. A. H. Sadi, A. AbuHussein, M. A. Shoeb, “Transient Performance Improvement of Power Systems Using Fuzzy Logic Controlled Capacitive-Bridge Type Fault Current Limiter,” IEEE Transactions on Power Systems, 36, No.1, Jan. 2021
- [32] G. Rashid, and M. H. Ali, “Transient Stability Enhancement of Double Fed Induction Machine Based Wind Generator by Bridge-Type Fault Current Limiter,” IEEE Transactions on Energy Conversion , Vol. 30, No. 3, 2015.
- [33] P. M. Anderson and Anjan Bose, “Stability Simulation of Wind Turbine Systems,” IEEE Transactions on Power Apparatus and Systems, . PAS-102, No.12, 3791-3795, Dec 1983
- [34] H. Nian, Y. Xu, L. Chen and M. Zhu, “Modeling and Analysis of DC Link Dynamics in DFIG System With an Indicator Function,” in IEEE Access, 7, 125401-125412, 2019, doi: 10.1109/ACCESS.2019.2938796.
- [35] C. Zhang, X. Cai, M. Molinas and A. Rygg, “Frequency-domain modelling and stability analysis of a DFIG-based wind energy conversion system under non-compensated AC grids: impedance modelling effects and consequences on stability,” in IET Power Electronics, 12, no. 4, 907-914, 10 4 2019, doi: 10.1049/ietpel.2018.5527
- [36] A. Rygg, M. Molinas, C. Zhang and X. Cai, “A Modified Sequence Domain Impedance Definition and Its Equivalence to the dq-Domain Impedance Definition for the Stability Analysis of AC Power Electronic Systems,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, 4, no. 4, 1383-1396, Dec. 2016
- [37] Y. Zhang, C. Klabunde and M. Wolter, “Study of Resonance Issues between DFIG-based Offshore Wind Farm and HVDC Transmission,” in Proceeding of Power System Computation Conference 2020, Porto, Portugal, 2020, also to be included in a special issue of the journal Electric Power Systems Research (EPSR)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-3631d89f-86af-4248-b007-3090eca420b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.