Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the field of numerical research there are various approaches and methods for structures of porous materials modeling. The solution is the use of fractal models to develop the porous structure. In the case of modeling the geometry of natural (random) materials, there is a problem of compatibility of the FE model geometry and real one. This is a source of differences between the results of calculations and experimental ones. Application of 3D printing technology will allow to receive a real structure in a controlled manner, which exactly reflects the designed structure and is consistent with the geometry of the numerical model. An experimental research on the standard samples made of photopolymer resin using 3D printing technique was presented in the paper. The aim of the research was to determine the base material properties and, consequently, to select the constitutive model, which is necessary to carry out numerical analyses.
Słowa kluczowe
Rocznik
Tom
Strony
183--194
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Katedra Mechaniki i Informatyki Stosowanej, Wydział Mechaniczny, Wojskowa Akademia Techniczna, ul. Kaliskiego 2, 00-908 Warszawa
autor
- Faculty of Mechanical Engineering Military University of Technology
autor
- Faculty of Mechanical Engineering Military University of Technology
autor
- Faculty of Mechanical Engineering Military University of Technology
Bibliografia
- Bhushan B., Caspers M. 2017. An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 23(4): 1117–1124.
- The ultimate guide to stereolitography (SLA) 3D printing. 2017. Formlabs, https://formlabs.com.
- Fouassier J.P., Allonas X., Burget D. 2003. Photopolimerization reactions under visible lights: principle, mechanisms and examples of applications. Progress in Organic Coatings, 47(1): 16–36.
- Gundrati N.B., Chakraborty P., Zhou C., Chung D.D.L. 2018. First observation of the effect of the layer printing sequence on the molecular structure of three-dimensionally printed polymer, as shown by in-plane capacitance measurement. Composites, Part B, Engineering, 140: 78–82.
- Gundrati N.B., Chakraborty P., Zhou C., Chung D.D.L. 2018. Effects of printing conditions on the molecular alignment of three-dimensionally printed polymer. Composites, Part B, Engineering, 134: 164–168.
- Ivanova O., Williams C., Campbell T. 2013. Additive manufacturing (AM) and nanotechnology promises and challenges. Rapid Prototyping Journal, 19(5): 353–364.
- Ligon S.C., Liska R., Stampfl J., Gurr M., Mülhaupt R. 2017. Polymers for 3D printing and customized additive manufacturing. Chemistry Reviev, 117(15): 10212–10290.
- Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., Hui D. 2018. Additive manufacturing (3D printing): A review of materials, methods, application and challenges. Composites, Part B, Engineering, 143: 173–196.
- Wang X., Jiang M., Zhou Z., Gou J., Hui D. 2017. 3D printing of polymer matrix composites: a review and prospective. Composites, Part B, Engineering, 110: 442–458.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-362dc55c-c51f-40a6-9e7a-6d6c428aa601